skip to main content


Title: Algorithm and Hardware Design of Discrete-Time Spiking Neural Networks Based on Back Propagation with Binary Activations
We present a new back propagation based training algorithm for discrete-time spiking neural networks (SNN). Inspired by recent deep learning algorithms on binarized neural networks, binary activation with a straight-through gradient estimator is used to model the leaky integrate-fire spiking neuron, overcoming the difficulty in training SNNs using back propagation. Two SNN training algorithms are proposed: (1) SNN with discontinuous integration, which is suitable for rate-coded input spikes, and (2) SNN with continuous integration, which is more general and can handle input spikes with temporal information. Neuromorphic hardware designed in 28nm CMOS exploits the spike sparsity and demonstrates high classification accuracy (>98% on MNIST) and low energy (51.4–773 nJ/image).  more » « less
Award ID(s):
1652866
NSF-PAR ID:
10053952
Author(s) / Creator(s):
Date Published:
Journal Name:
Biomedical Circuits and Systems Conference
ISSN:
2163-4025
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spiking neural network (SNN) has attracted more and more research attention due to its event-based property. SNNs are more power efficient with such property than a conventional artificial neural network. For transferring the information to spikes, SNNs need an encoding process. With the temporal encoding schemes, SNN can extract the temporal patterns from the original information. A more advanced encoding scheme is a multiplexing temporal encoding which combines several encoding schemes with different timescales to have a larger information density and dynamic range. After that, the spike timing dependence plasticity (STDP) learning algorithm is utilized for training the SNN since the SNN can not be trained with regular training algorithms like backpropagation. In this work, a spiking domain feature extraction neural network with temporal multiplexing encoding is designed on EAGLE and fabricated on the PCB board. The testbench’s power consumption is 400mW. From the test result, a conclusion can be drawn that the network on PCB can transfer the input information to multiplexing temporal encoded spikes and then utilize the spikes to adjust the synaptic weight voltage. 
    more » « less
  2. Building accurate and efficient deep neural network (DNN) models for intelligent sensing systems to process data locally is essential. Spiking neural networks (SNNs) have gained significant popularity in recent years because they are more biological-plausible and energy-efficient than DNNs. However, SNNs usually have lower accuracy than DNNs. In this paper, we propose to use SNNs for image sensing applications. Moreover, we introduce the DNN-SNN knowledge distillation algorithm to reduce the accuracy gap between DNNs and SNNs. Our DNNSNN knowledge distillation improves the accuracy of an SNN by transferring knowledge between a DNN and an SNN. To better transfer the knowledge, our algorithm creates two learning paths from a DNN to an SNN. One path is between the output layer and another path is between the intermediate layer. DNNs use real numbers to propagate information between neurons while SNNs use 1-bit spikes. To empower the communication between DNNs and SNNs, we utilize a decoder to decode spikes into real numbers. Also, our algorithm creates a learning path from an SNN to a DNN. This learning path better adapts the DNN to the SNN by allowing the DNN to learn the knowledge from the SNN. Our SNN models are deployed on Loihi, which is a specialized chip for SNN models. On the MNIST dataset, our SNN models trained by the DNN-SNN knowledge distillation achieve better accuracy than the SNN models on GPU trained by other training algorithms with much lower energy consumption per image. 
    more » « less
  3. Spiking neural networks (SNNs) are positioned to enable spatio-temporal information processing and ultra-low power event-driven neuromorphic hardware. However, SNNs are yet to reach the same performances of conventional deep artificial neural networks (ANNs), a long-standing challenge due to complex dynamics and non-differentiable spike events encountered in training. The existing SNN error backpropagation (BP) methods are limited in terms of scalability, lack of proper handling of spiking discontinuities, and/or mismatch between the rate coded loss function and computed gradient. We present a hybrid macro/micro level backpropagation (HM2-BP) algorithm for training multi-layer SNNs. The temporal effects are precisely captured by the proposed spike-train level post-synaptic potential (S-PSP) at the microscopic level. The rate-coded errors are defined at the macroscopic level, computed and back-propagated across both macroscopic and microscopic levels. Different from existing BP methods, HM2-BP directly computes the gradient of the rate-coded loss function w.r.t tunable parameters. We evaluate the proposed HM2-BP algorithm by training deep fully connected and convolutional SNNs based on the static MNIST [14] and dynamic neuromorphic N-MNIST [26]. HM2-BP achieves an accuracy level of 99:49% and 98:88% for MNIST and N-MNIST, respectively, outperforming the best reported performances obtained from the existing SNN BP algorithms. Furthermore, the HM2-BP produces the highest accuracies based on SNNs for the EMNIST [3] dataset, and leads to high recognition accuracy for the 16-speaker spoken English letters of TI46 Corpus [16], a challenging spatio-temporal speech recognition benchmark for which no prior success based on SNNs was reported. It also achieves competitive performances surpassing those of conventional deep learning models when dealing with asynchronous spiking streams. 
    more » « less
  4. Asynchronous event-driven computation and communication using spikes facilitate the realization of spiking neural networks (SNN) to be massively parallel, extremely energy efficient and highly robust on specialized neuromorphic hardware. However, the lack of a unified robust learning algorithm limits the SNN to shallow networks with low accuracies. Artificial neural networks (ANN), however, have the backpropagation algorithm which can utilize gradient descent to train networks which are locally robust universal function approximators. But backpropagation algorithm is neither biologically plausible nor neuromorphic implementation friendly because it requires: 1) separate backward and forward passes, 2) differentiable neurons, 3) high-precision propagated errors, 4) coherent copy of weight matrices at feedforward weights and the backward pass, and 5) non-local weight update. Thus, we propose an approximation of the backpropagation algorithm completely with spiking neurons and extend it to a local weight update rule which resembles a biologically plausible learning rule spike-timing-dependent plasticity (STDP). This will enable error propagation through spiking neurons for a more biologically plausible and neuromorphic implementation friendly backpropagation algorithm for SNNs. We test the proposed algorithm on various traditional and non-traditional benchmarks with competitive results. 
    more » « less
  5. Abstract

    Objective.Spiking neural networks (SNNs) are powerful tools that are well suited for brain machine interfaces (BMI) due to their similarity to biological neural systems and computational efficiency. They have shown comparable accuracy to state-of-the-art methods, but current training methods require large amounts of memory, and they cannot be trained on a continuous input stream without pausing periodically to perform backpropagation. An ideal BMI should be capable training continuously without interruption to minimize disruption to the user and adapt to changing neural environments.Approach.We propose a continuous SNN weight update algorithm that can be trained to perform regression learning with no need for storing past spiking events in memory. As a result, the amount of memory needed for training is constant regardless of the input duration. We evaluate the accuracy of the network on recordings of neural data taken from the premotor cortex of a primate performing reaching tasks. Additionally, we evaluate the SNN in a simulated closed loop environment and observe its ability to adapt to sudden changes in the input neural structure.Main results.The continuous learning SNN achieves the same peak correlation (ρ=0.7) as existing SNN training methods when trained offline on real neural data while reducing the total memory usage by 92%. Additionally, it matches state-of-the-art accuracy in a closed loop environment, demonstrates adaptability when subjected to multiple types of neural input disruptions, and is capable of being trained online without any prior offline training.Significance.This work presents a neural decoding algorithm that can be trained rapidly in a closed loop setting. The algorithm increases the speed of acclimating a new user to the system and also can adapt to sudden changes in neural behavior with minimal disruption to the user.

     
    more » « less