skip to main content

Title: Algorithm and Hardware Design of Discrete-Time Spiking Neural Networks Based on Back Propagation with Binary Activations
We present a new back propagation based training algorithm for discrete-time spiking neural networks (SNN). Inspired by recent deep learning algorithms on binarized neural networks, binary activation with a straight-through gradient estimator is used to model the leaky integrate-fire spiking neuron, overcoming the difficulty in training SNNs using back propagation. Two SNN training algorithms are proposed: (1) SNN with discontinuous integration, which is suitable for rate-coded input spikes, and (2) SNN with continuous integration, which is more general and can handle input spikes with temporal information. Neuromorphic hardware designed in 28nm CMOS exploits the spike sparsity and demonstrates high classification accuracy (>98% on MNIST) and low energy (51.4–773 nJ/image).
Authors:
Award ID(s):
1652866
Publication Date:
NSF-PAR ID:
10053952
Journal Name:
Biomedical Circuits and Systems Conference
ISSN:
2163-4025
Sponsoring Org:
National Science Foundation
More Like this
  1. Spiking neural networks (SNNs) are positioned to enable spatio-temporal information processing and ultra-low power event-driven neuromorphic hardware. However, SNNs are yet to reach the same performances of conventional deep artificial neural networks (ANNs), a long-standing challenge due to complex dynamics and non-differentiable spike events encountered in training. The existing SNN error backpropagation (BP) methods are limited in terms of scalability, lack of proper handling of spiking discontinuities, and/or mismatch between the rate coded loss function and computed gradient. We present a hybrid macro/micro level backpropagation (HM2-BP) algorithm for training multi-layer SNNs. The temporal effects are precisely captured by the proposed spike-train level post-synaptic potential (S-PSP) at the microscopic level. The rate-coded errors are defined at the macroscopic level, computed and back-propagated across both macroscopic and microscopic levels. Different from existing BP methods, HM2-BP directly computes the gradient of the rate-coded loss function w.r.t tunable parameters. We evaluate the proposed HM2-BP algorithm by training deep fully connected and convolutional SNNs based on the static MNIST [14] and dynamic neuromorphic N-MNIST [26]. HM2-BP achieves an accuracy level of 99:49% and 98:88% for MNIST and N-MNIST, respectively, outperforming the best reported performances obtained from the existing SNN BP algorithms. Furthermore, the HM2-BP producesmore »the highest accuracies based on SNNs for the EMNIST [3] dataset, and leads to high recognition accuracy for the 16-speaker spoken English letters of TI46 Corpus [16], a challenging spatio-temporal speech recognition benchmark for which no prior success based on SNNs was reported. It also achieves competitive performances surpassing those of conventional deep learning models when dealing with asynchronous spiking streams.« less
  2. Asynchronous event-driven computation and communication using spikes facilitate the realization of spiking neural networks (SNN) to be massively parallel, extremely energy efficient and highly robust on specialized neuromorphic hardware. However, the lack of a unified robust learning algorithm limits the SNN to shallow networks with low accuracies. Artificial neural networks (ANN), however, have the backpropagation algorithm which can utilize gradient descent to train networks which are locally robust universal function approximators. But backpropagation algorithm is neither biologically plausible nor neuromorphic implementation friendly because it requires: 1) separate backward and forward passes, 2) differentiable neurons, 3) high-precision propagated errors, 4) coherent copy of weight matrices at feedforward weights and the backward pass, and 5) non-local weight update. Thus, we propose an approximation of the backpropagation algorithm completely with spiking neurons and extend it to a local weight update rule which resembles a biologically plausible learning rule spike-timing-dependent plasticity (STDP). This will enable error propagation through spiking neurons for a more biologically plausible and neuromorphic implementation friendly backpropagation algorithm for SNNs. We test the proposed algorithm on various traditional and non-traditional benchmarks with competitive results.
  3. Spiking neural networks (SNNs) well support spatio-temporal learning and energy-efficient event-driven hardware neuromorphic processors. As an important class of SNNs, recurrent spiking neural networks (RSNNs) possess great computational power. However, the practical application of RSNNs is severely limited by challenges in training. Biologically-inspired unsupervised learning has limited capability in boosting the performance of RSNNs. On the other hand, existing backpropagation (BP) methods suffer from high complexity of unfolding in time, vanishing and exploding gradients, and approximate differentiation of discontinuous spiking activities when applied to RSNNs. To enable supervised training of RSNNs under a well-defined loss function, we present a novel Spike-Train level RSNNs Backpropagation (ST-RSBP) algorithm for training deep RSNNs. The proposed ST-RSBP directly computes the gradient of a rate-coded loss function defined at the output layer of the network w.r.t tunable parameters. The scalability of ST-RSBP is achieved by the proposed spike-train level computation during which temporal effects of the SNN is captured in both the forward and backward pass of BP. Our ST-RSBP algorithm can be broadly applied to RSNNs with a single recurrent layer or deep RSNNs with multiple feedforward and recurrent layers. Based upon challenging speech and image datasets including TI46, N-TIDIGITS, Fashion-MNIST and MNIST, ST-RSBPmore »is able to train SNNs with an accuracy surpassing that of the current state-of-the-art SNN BP algorithms and conventional non-spiking deep learning models.« less
  4. Artificial Neural Networks (ANNs) are currently being used as function approximators in many state-of-the-art Reinforcement Learning (RL) algorithms. Spiking Neural Networks (SNNs) have been shown to drastically reduce the energy consumption of ANNs by encoding information in sparse temporal binary spike streams, hence emulating the communication mechanism of biological neurons. Due to their low energy consumption, SNNs are considered to be important candidates as co-processors to be implemented in mobile devices. In this work, the use of SNNs as stochastic policies is explored under an energy-efficient first-to-spike action rule, whereby the action taken by the RL agent is determined by the occurrence of the first spike among the output neurons. A policy gradient-based algorithm is derived considering a Generalized Linear Model (GLM) for spiking neurons. Experimental results demonstrate the capability of online trained SNNs as stochastic policies to gracefully trade energy consumption, as measured by the number of spikes, and control performance. Significant gains are shown as compared to the standard approach of converting an offline trained ANN into an SNN.
  5. High-quality 3D image recognition is an important component of many vision and robotics systems. However, the accurate processing of these images requires the use of compute-expensive 3D Convolutional Neural Networks (CNNs). To address this challenge, we propose the use of Spiking Neural Networks (SNNs) that are generated from iso-architecture CNNs and trained with quantization-aware gradient descent to optimize their weights, membrane leak, and firing thresholds. During both training and inference, the analog pixel values of a 3D image are directly applied to the input layer of the SNN without the need to convert to a spike-train. This significantly reduces the training and inference latency and results in high degree of activation sparsity, which yields significant improvements in computational efficiency. However, this introduces energy-hungry digital multiplications in the first layer of our models, which we propose to mitigate using a processing-in-memory (PIM) architecture. To evaluate our proposal, we propose a 3D and a 3D/2D hybrid SNN-compatible convolutional architecture and choose hyperspectral imaging (HSI) as an application for 3D image recognition. We achieve overall test accuracy of 98.68, 99.50, and 97.95% with 5 time steps (inference latency) and 6-bit weight quantization on the Indian Pines, Pavia University, and Salinas Scene datasets, respectively.more »In particular, our models implemented using standard digital hardware achieved accuracies similar to state-of-the-art (SOTA) with ~560.6× and ~44.8× less average energy than an iso-architecture full-precision and 6-bit quantized CNN, respectively. Adopting the PIM architecture in the first layer, further improves the average energy, delay, and energy-delay-product (EDP) by 30, 7, and 38%, respectively.« less