skip to main content

Title: DelayRadar: A multivariate predictive model for transit systems
Effective public transit operations are one of the fundamental requirements for a modern community. Recently, a number of transit agencies have started integrating automated vehicle locators in their fleet, which provides a real-time estimate of the time of arrival. In this paper, we use the data collected over several months from one such transit system and show how this data can be potentially used to learn long term patterns of travel time. More specifically, we study the effect of weather and other factors such as traffic on the transit system delay. These models can later be used to understand the seasonal variations and to design adaptive and transient transit schedules. Towards this goal, we also propose an online architecture called DelayRadar. The novelty of DelayRadar lies in three aspects: (1) a data store that collects and integrates real-time and static data from multiple data sources, (2) a predictive statistical model that analyzes the data to make predictions on transit travel time, and (3) a decision making framework to develop an optimal transit schedule based on variable forecasts related to traffic, weather, and other impactful factors. This paper focuses on identifying the model with the best predictive accuracy to be used more » in DelayRadar. According to the preliminary study results, we are able to explain more than 70% of the variance in the bus travel time and we can make future travel predictions with an out-of-sample error of 4.8 minutes with information on the bus schedule, traffic, and weather. « less
Authors:
; ; ;
Award ID(s):
1528799
Publication Date:
NSF-PAR ID:
10054144
Journal Name:
Big Data (Big Data), 2016 IEEE International Conference on
Page Range or eLocation-ID:
1799-1806
Sponsoring Org:
National Science Foundation
More Like this
  1. An effective real-time estimation of the travel time for vehicles, using AVL (Automatic Vehicle Locators) has added a new dimension to the smart city planning. In this paper, the authors used data collected over several months from a transit agency and show how this data can be potentially used to learn patterns of travel time during specially planned events like NFL (National Football League) games and music award ceremonies. The impact of NFL games along with consideration of other factors like weather, traffic condition, distance is discussed with their relative importance to the prediction of travel time. Statistical learning modelsmore »are used to predict travel time and subsequently assess the cascading effects of delay. The model performance is determined based on its predictive accuracy according to the out-of-sample error. In addition, the models help identify the most significant variables that influence the delay in the transit system. In order to compare the actual and predicted travel time for days having special events, heat maps are generated showing the delay impacts in different time windows between two timepoint-segments in comparison to a non-game day. This work focuses on the prediction and visualization of the delay in the public transit system and the analysis of its cascading effects on the entire transportation network. According to the study results, the authors are able to explain more than 80% of the variance in the bus travel time at each segment and can make future travel predictions during planned events with an out-of-sample error of 2.0 minutes using information on the bus schedule, traffic, weather, and scheduled events. According to the variable importance analysis, traffic information is most significant in predicting the delay in the transit system.« less
  2. Public transits, such as buses and subway lines, offer affordable ride-sharing services and reduce the road network traffic, thus have significant impacts in mitigating the urban traffic congestion problem. However, it is non-trivial to evaluate a new transit plan, such as a new bus route or a new subway line, of its future ridership prior to actual deployment, since the travel preferences of passengers along the planned routes may vary. In this paper, we make the first attempt to model passengers' preferences of making various transit choices using a Markov Decision Process (MDP). Moreover, we develop a novel inverse preferencemore »learning algorithm to infer the passengers' preferences and predict the future human behavior changes, e.g., ridership, of a new urban transit plan before its deployment. We validate our proposed framework using a unique real-world dataset (from Shenzhen, China) with three subway lines opened during the data time span. With the data collected from both before and after the transit plan deployments, Our evaluation results demonstrated that the proposed framework can predict the ridership with only 19.8% relative error, which is 23%-51% lower than other baseline approaches.« less
  3. Public transit is a critical component of a smart and connected community. As such, citizens expect and require accurate information about real-time arrival/departures of transportation assets. As transit agencies enable large-scale integration of real-time sensors and support back-end data-driven decision support systems, the dynamic data-driven applications systems (DDDAS) paradigm becomes a promising approach to make the system smarter by providing online model learning and multi-time scale analytics as part of the decision support system that is used in the DDDAS feedback loop. In this paper, we describe a system in use in Nashville and illustrate the analytic methods developed bymore »our team. These methods use both historical as well as real-time streaming data for online bus arrival prediction. The historical data is used to build classifiers that enable us to create expected performance models as well as identify anomalies. These classifiers can be used to provide schedule adjustment feedback to the metro transit authority. We also show how these analytics services can be packaged into modular, distributed and resilient micro-services that can be deployed on both cloud back ends as well as edge computing resources.« less
  4. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016More>>
  5. Social media can be a significant tool for transportation and transit agencies providing passengers with real-time information on traffic events. Moreover, COVID-19 and other limitations have compelled the agencies to engage with travelers online to promote public knowledge about COVID-related issues. It is, therefore, important to understand the agencies’ communication patterns. In this original study, the Twitter communication patterns of different transportation actors—types of message, communication sufficiency, consistency, and coordination—were examined using a social media data-driven approach applying text mining techniques and dynamic network analysis. A total of 850,000 tweets from 395 different transportation and transit agencies, starting in 2018more »and the periods before, during and after the pandemic, were studied. Transportation agencies (federal, state, and city) were found to be less active on Twitter and mostly discussed safety measures, project management, and so forth. By contrast, the transit agencies (local bus and light, heavy, and commuter rail) were more active on Twitter and shared information about crashes, schedule information, passenger services, and so forth. Moreover, transportation agencies shared minimal pandemic safety information than transit agencies. Dynamic network analysis reveals interaction patterns among different transportation actors that are poorly connected and coordinated among themselves and with different health agencies (e.g., Centers for Disease Control and Prevention [CDC] and the Federal Emergency Management Agency [FEMA]). The outcome of this study provides understanding to improve existing communication plans, critical information dissemination efficacy, and the coordination of different transportation actors in general and during unprecedented health crises.« less