Urban public transit planning is crucial in reducing traffic congestion and enabling green transportation. However, there is no systematic way to integrate passengers' personal preferences in planning public transit routes and schedules so as to achieve high occupancy rates and efficiency gain of ride-sharing. In this paper, we take the first step tp exact passengers' preferences in planning from history public transit data. We propose a data-driven method to construct a Markov decision process model that characterizes the process of passengers making sequential public transit choices, in bus routes, subway lines, and transfer stops/stations. Using the model, we integrate softmax policy iteration into maximum entropy inverse reinforcement learning to infer the passenger's reward function from observed trajectory data. The inferred reward function will enable an urban planner to predict passengers' route planning decisions given some proposed transit plans, for example, opening a new bus route or subway line. Finally, we demonstrate the correctness and accuracy of our modeling and inference methods in a large-scale (three months) passenger-level public transit trajectory data from Shenzhen, China. Our method contributes to smart transportation design and human-centric urban planning.
more »
« less
Human-Centric Urban Transit Evaluation and Planning
Public transits, such as buses and subway lines, offer affordable ride-sharing services and reduce the road network traffic, thus have significant impacts in mitigating the urban traffic congestion problem. However, it is non-trivial to evaluate a new transit plan, such as a new bus route or a new subway line, of its future ridership prior to actual deployment, since the travel preferences of passengers along the planned routes may vary. In this paper, we make the first attempt to model passengers' preferences of making various transit choices using a Markov Decision Process (MDP). Moreover, we develop a novel inverse preference learning algorithm to infer the passengers' preferences and predict the future human behavior changes, e.g., ridership, of a new urban transit plan before its deployment. We validate our proposed framework using a unique real-world dataset (from Shenzhen, China) with three subway lines opened during the data time span. With the data collected from both before and after the transit plan deployments, Our evaluation results demonstrated that the proposed framework can predict the ridership with only 19.8% relative error, which is 23%-51% lower than other baseline approaches.
more »
« less
- Award ID(s):
- 1657350
- NSF-PAR ID:
- 10098197
- Date Published:
- Journal Name:
- 2018 IEEE International Conference on Data Mining (ICDM)
- Page Range / eLocation ID:
- 547 to 556
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ability to accurately predict public transit ridership demand benefits passengers and transit agencies. Agencies will be able to reallocate buses to handle under or over-utilized bus routes, improving resource utilization, and passengers will be able to adjust and plan their schedules to avoid overcrowded buses and maintain a certain level of comfort. However, accurately predicting occupancy is a non-trivial task. Various reasons such as heterogeneity, evolving ridership patterns, exogenous events like weather, and other stochastic variables, make the task much more challenging. With the progress of big data, transit authorities now have access to real-time passenger occupancy information for their vehicles. The amount of data generated is staggering. While there is no shortage in data, it must still be cleaned, processed, augmented, and merged before any useful information can be generated. In this paper, we propose the use and fusion of data from multiple sources, cleaned, processed, and merged together, for use in training machine learning models to predict transit ridership. We use data that spans a 2-year period (2020-2022) incorporating transit, weather, traffic, and calendar data. The resulting data, which equates to 17 million observations, is used to train separate models for the trip and stop level prediction. We evaluate our approach on real-world transit data provided by the public transit agency of Nashville, TN. We demonstrate that the trip level model based on Xgboost and the stop level model based on LSTM outperform the baseline statistical model across the entire transit service day.more » « less
-
COVID-19 has radically transformed urban travel behavior throughout the world. Agencies have had to provide adequate service while navigating a rapidly changing environment with reduced revenue. As COVID-19-related restrictions are lifted, transit agencies are concerned about their ability to adapt to changes in ridership behavior and public transit usage. To aid their becoming more adaptive to sudden or persistent shifts in ridership, we addressed three questions: To what degree has COVID-19 affected fixed-line public transit ridership and what is the relationship between reduced demand and -vehicle trips? How has COVID-19 changed ridership patterns and are they expected to persist after restrictions are lifted? Are there disparities in ridership changes across socioeconomic groups and mobility-impaired riders? Focusing on Nashville and Chattanooga, TN, ridership demand and vehicle trips were compared with anonymized mobile location data to study the relationship between mobility patterns and transit usage. Correlation analysis and multiple linear regression were used to investigate the relationship between socioeconomic indicators and changes in transit ridership, and an analysis of changes in paratransit demand before and during COVID-19. Ridership initially dropped by 66% and 65% over the first month of the pandemic for Nashville and Chattanooga, respectively. Cellular mobility patterns in Chattanooga indicated that foot traffic recovered to a greater degree than transit ridership between mid-April and the last week in June, 2020. Education-level had a statistically significant impact on changes in fixed-line bus transit, and the distribution of changes in demand for paratransit services were similar to those of fixed-line bus transit.more » « less
-
Studies of transit dwell times suggest that the delay caused by passengers boarding and alighting rises with the number of passengers on each vehicle. This paper incorporates such a “friction effect” into an isotropic model of a transit route with elastic demand. We derive a strongly unimodal “Network Alighting Function” giving the steady-state rate of passenger flows in terms of the accumulation of passengers on vehicles. Like the Network Exit Function developed for isotropic models of vehicle traffic, the system may exhibit hypercongestion. Since ridership depends on travel times, wait times and the level of crowding, the physical model is used to solve for (possibly multiple) equilibria as well as the social optimum. Using replicator dynamics to describe the evolution of demand, we also investigate the asymptotic local stability of different kinds of equilibria.more » « less
-
Rapid urbanization has posed significant burden on urban transportation infrastructures. In today's cities, both private and public transits have clear limitations to fulfill passengers' needs for quality of experience (QoE): Public transits operate along fixed routes with long wait time and total transit time; Private transits, such as taxis, private shuttles and ride-hailing services, provide point-to-point transits with high trip fare. In this paper, we propose CityLines, a transformative urban transit system, employing hybrid hub-and-spoke transit model with shared shuttles. Analogous to Airlines services, the proposed CityLines system routes urban trips among spokes through a few hubs or direct paths, with travel time as short as private transits and fare as low as public transits. CityLines allows both point-to-point connection to improve the passenger QoE, and hub-and-spoke connection to reduce the system operation cost. To evaluate the performance of CityLines, we conduct extensive data-driven experiments using one-month real-world trip demand data (from taxis, buses and subway trains) collected from Shenzhen, China. The results demonstrate that CityLines reduces 12.5%-44% average travel time, and aggregates 8.5%-32.6% more trips with ride-sharing over other implementation baselines.more » « less