Public transit is a vital mode of transportation in urban areas, and its efficiency is crucial for the daily commute of millions of people. To improve the reliability and predictability of transit systems, researchers have developed separate single-task learning models to predict the occupancy and delay of buses at the stop or route level. However, these models provide a narrow view of delay and occupancy at each stop and do not account for the correlation between the two. We propose a novel approach that leverages broader generalizable patterns governing delay and occupancy for improved prediction. We introduce a multitask learning toolchain that takes into account General Transit Feed Specification feeds, Automatic Passenger Counter data, and contextual temporal and spatial information. The toolchain predicts transit delay and occupancy at the stop level, improving the accuracy of the predictions of these two features of a trip given sparse and noisy data. We also show that our toolchain can adapt to fewer samples of new transit data once it has been trained on previous routes/trips as compared to state-of-the-art methods. Finally, we use actual data from Chattanooga, Tennessee, to validate our approach. We compare our approach against the state-of-the-art methods and we show that treating occupancy and delay as related problems improves the accuracy of the predictions. We show that our approach improves delay prediction significantly by as much as 4% in F1 scores while producing equivalent or better results for occupancy.
more »
« less
On Designing Day Ahead and Same Day Ridership Level Prediction Models for City-Scale Transit Networks Using Noisy APC Data
The ability to accurately predict public transit ridership demand benefits passengers and transit agencies. Agencies will be able to reallocate buses to handle under or over-utilized bus routes, improving resource utilization, and passengers will be able to adjust and plan their schedules to avoid overcrowded buses and maintain a certain level of comfort. However, accurately predicting occupancy is a non-trivial task. Various reasons such as heterogeneity, evolving ridership patterns, exogenous events like weather, and other stochastic variables, make the task much more challenging. With the progress of big data, transit authorities now have access to real-time passenger occupancy information for their vehicles. The amount of data generated is staggering. While there is no shortage in data, it must still be cleaned, processed, augmented, and merged before any useful information can be generated. In this paper, we propose the use and fusion of data from multiple sources, cleaned, processed, and merged together, for use in training machine learning models to predict transit ridership. We use data that spans a 2-year period (2020-2022) incorporating transit, weather, traffic, and calendar data. The resulting data, which equates to 17 million observations, is used to train separate models for the trip and stop level prediction. We evaluate our approach on real-world transit data provided by the public transit agency of Nashville, TN. We demonstrate that the trip level model based on Xgboost and the stop level model based on LSTM outperform the baseline statistical model across the entire transit service day.
more »
« less
- Award ID(s):
- 1952011
- NSF-PAR ID:
- 10466147
- Date Published:
- Journal Name:
- 2022 IEEE International Conference on Big Data (Big Data)
- Page Range / eLocation ID:
- 5598 to 5606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Public transits, such as buses and subway lines, offer affordable ride-sharing services and reduce the road network traffic, thus have significant impacts in mitigating the urban traffic congestion problem. However, it is non-trivial to evaluate a new transit plan, such as a new bus route or a new subway line, of its future ridership prior to actual deployment, since the travel preferences of passengers along the planned routes may vary. In this paper, we make the first attempt to model passengers' preferences of making various transit choices using a Markov Decision Process (MDP). Moreover, we develop a novel inverse preference learning algorithm to infer the passengers' preferences and predict the future human behavior changes, e.g., ridership, of a new urban transit plan before its deployment. We validate our proposed framework using a unique real-world dataset (from Shenzhen, China) with three subway lines opened during the data time span. With the data collected from both before and after the transit plan deployments, Our evaluation results demonstrated that the proposed framework can predict the ridership with only 19.8% relative error, which is 23%-51% lower than other baseline approaches.more » « less
-
Public transit agencies struggle to maintain transit accessibility with reduced resources, unreliable ridership data, reduced vehicle capacities due to social distancing, and reduced services due to driver unavailability. In collaboration with transit agencies from two large metropolitan areas in the USA, we are designing novel approaches for addressing the afore-mentioned challenges by collecting accurate real-time ridership data, providing guidance to commuters, and performing operational optimization for public transit. We estimate rider-ship data using historical automated passenger counting data, conditional on a set of relevant determinants. Accurate ridership forecasting is essential to optimize the public transit schedule, which is necessary to improve current fixed lines with on-demand transit. Also, passenger crowding has been a problem for public transportation since it deteriorates passengers’ wellbeing and satisfaction. During the COVID-19 pandemic, passenger crowding has gained importance since it represents a risk for social distancing violations. Therefore, we are creating optimization models to ensure that social distancing norms can be adequately followed while ensuring that the total demand for transit is met. We will then use accurate forecasts for operational optimization that includes (a) proactive fixed-line schedule optimization based on predicted demand, (b) dispatch of on-demand micro-transit, prioritizing at-risk populations, and (c) allocation of vehicles to transit and cargo trips, considering exigent vehicle maintenance requirements (i.e., disinfection). Finally, this paper presents some initial results from our project regarding the estimation of ridership in public transit.more » « less
-
null (Ed.)Public transit agencies struggle to maintain transit accessibility with reduced resources, unreliable ridership data, reduced vehicle capacities due to social distancing, and reduced services due to driver unavailability. In collaboration with transit agencies from two large metropolitan areas in the USA, we are designing novel approaches for addressing the afore-mentioned challenges by collecting accurate real-time ridership data, providing guidance to commuters, and performing operational optimization for public transit. We estimate rider-ship data using historical automated passenger counting data, conditional on a set of relevant determinants. Accurate ridership forecasting is essential to optimize the public transit schedule, which is necessary to improve current fixed lines with on-demand transit. Also, passenger crowding has been a problem for public transportation since it deteriorates passengers’ wellbeing and satisfaction. During the COVID-19 pandemic, passenger crowding has gained importance since it represents a risk for social distancing violations. Therefore, we are creating optimization models to ensure that social distancing norms can be adequately followed while ensuring that the total demand for transit is met. We will then use accurate forecasts for operational optimization that includes \textit(a) proactive fixed-line schedule optimization based on predicted demand, \textit(b) dispatch of on-demand micro-transit, prioritizing at-risk populations, and \textit(c) allocation of vehicles to transit and cargo trips, considering exigent vehicle maintenance requirements (\textiti.e., disinfection). Finally, this paper presents some initial results from our project regarding the estimation of ridership in public transit.more » « less
-
Accurately predicting the ridership of public-transit routes provides substantial benefits to both transit agencies, who can dispatch additional vehicles proactively before the vehicles that serve a route become crowded, and to passengers, who can avoid crowded vehicles based on publicly available predictions. The spread of the coronavirus disease has further elevated the importance of ridership prediction as crowded vehicles now present not only an inconvenience but also a public-health risk. At the same time, accurately predicting ridership has become more challenging due to evolving ridership patterns, which may make all data except for the most recent records stale. One promising approach for improving prediction accuracy is to fine-tune the hyper-parameters of machine-learning models for each transit route based on the characteristics of the particular route, such as the number of records. However, manually designing a machine-learning model for each route is a labor-intensive process, which may require experts to spend a significant amount of their valuable time. To help experts with designing machine-learning models, we propose a neural-architecture and feature search approach, which optimizes the architecture and features of a deep neural network for predicting the ridership of a public-transit route. Our approach is based on a randomized local hyper-parameter search, which minimizes both prediction error as well as the complexity of the model. We evaluate our approach on real-world ridership data provided by the public transit agency of Chattanooga, TN, and we demonstrate that training neural networks whose architectures and features are optimized for each route provides significantly better performance than training neural networks whose architectures and features are generic.more » « less