skip to main content

Title: A Look-Up Table-Based Ray Integration Framework for 2-D/3-D Forward and Back Projection in X-Ray CT
Iterative algorithms have become increasingly popular in Computed Tomography (CT) image reconstruction since they better deal with the adverse image artifacts arising from low radiation dose image acquisition. But iterative methods remain computationally expensive. The main cost emerges in the projection and backprojection operations where accurate CT system modeling can greatly improve the quality of the reconstructed image. We present a framework that improves upon one particular aspect - the accurate projection of the image basis functions. It differs from current methods in that it substitutes the high computational complexity associated with accurate voxel projection by a small number of memory operations. Coefficients are computed in advance and stored in look-up tables parameterized by the CT system's projection geometry. The look-up tables only require a few kilobytes of storage and can be efficiently accelerated on the GPU. We demonstrate our framework with both numerical and clinical experiments and compare its performance with the current state of the art scheme - the separable footprint method.
Award ID(s):
Publication Date:
Journal Name:
IEEE transactions on medical imaging
Page Range or eLocation-ID:
pp. 99
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The goal of this study is to develop a new computed tomography (CT) image reconstruction method, aiming at improving the quality of the reconstructed images of existing methods while reducing computational costs. Existing CT reconstruction is modeled by pixel-based piecewise constant approximations of the integral equation that describes the CT projection data acquisition process. Using these approximations imposes a bottleneck model error and results in a discrete system of a large size. We propose to develop a content-adaptive unstructured grid (CAUG) based regularized CT reconstruction method to address these issues. Specifically, we design a CAUG of the image domain to sparsely represent the underlying image, and introduce a CAUG-based piecewise linear approximation of the integral equation by employing a collocation method. We further apply a regularization defined on the CAUG for the resulting ill-posed linear system, which may lead to a sparse linear representation for the underlying solution. The regularized CT reconstruction is formulated as a convex optimization problem, whose objective function consists of a weighted least square norm based fidelity term, a regularization term and a constraint term. Here, the corresponding weighted matrix is derived from the simultaneous algebraic reconstruction technique (SART). We then develop a SART-type preconditioned fixed-pointmore »proximity algorithm to solve the optimization problem. Convergence analysis is provided for the resulting iterative algorithm. Numerical experiments demonstrate the superiority of the proposed method over several existing methods in terms of both suppressing noise and reducing computational costs. These methods include the SART without regularization and with the quadratic regularization, the traditional total variation (TV) regularized reconstruction method and the TV superiorized conjugate gradient method on the pixel grid.« less
  2. Static coded aperture x-ray tomography was introduced recently where a static illumination pattern is used to interrogate an object with a low radiation dose, from which an accurate 3D reconstruction of the object can be attained computationally. Rather than continuously switching the pattern of illumination with each view angle, as traditionally done, static code computed tomography (CT) places a single pattern for all views. The advantages are many, including the feasibility of practical implementation. This paper generalizes this powerful framework to develop single-scan dual-energy coded aperture spectral tomography that enables material characterization at a significantly reduced exposure level. Two sensing strategies are explored: rapid kV switching with a single-static block/unblock coded aperture, and coded apertures with non-uniform thickness. Both systems rely on coded illumination with a plurality of x-ray spectra created by kV switching or 3D coded apertures. The structured x-ray illumination is projected through the objects of interest and measured with standard x-ray energy integrating detectors. Then, based on the tensor representation of projection data, we develop an algorithm to estimate a full set of synthesized measurements that can be used with standard reconstruction algorithms to accurately recover the object in each energy channel. Simulation and experimental results demonstratemore »the effectiveness of the proposed cost-effective solution to attain material characterization in low-dose dual-energy CT.« less
  3. This paper introduces a deep neural network based method, i.e., DeepOrganNet, to generate and visualize fully high-fidelity 3D / 4D organ geometric models from single-view medical images with complicated background in real time. Traditional 3D / 4D medical image reconstruction requires near hundreds of projections, which cost insufferable computational time and deliver undesirable high imaging / radiation dose to human subjects. Moreover, it always needs further notorious processes to segment or extract the accurate 3D organ models subsequently. The computational time and imaging dose can be reduced by decreasing the number of projections, but the reconstructed image quality is degraded accordingly. To our knowledge, there is no method directly and explicitly reconstructing multiple 3D organ meshes from a single 2D medical grayscale image on the fly. Given single-view 2D medical images, e.g., 3D / 4D-CT projections or X-ray images, our end-to-end DeepOrganNet framework can efficiently and effectively reconstruct 3D / 4D lung models with a variety of geometric shapes by learning the smooth deformation fields from multiple templates based on a trivariate tensor-product deformation technique, leveraging an informative latent descriptor extracted from input 2D images. The proposed method can guarantee to generate high-quality and high-fidelity manifold meshes for 3D /more »4D lung models; while, all current deep learning based approaches on the shape reconstruction from a single image cannot. The major contributions of this work are to accurately reconstruct the 3D organ shapes from 2D single-view projection, significantly improve the procedure time to allow on-the-fly visualization, and dramatically reduce the imaging dose for human subjects. Experimental results are evaluated and compared with the traditional reconstruction method and the state-of-the-art in deep learning, by using extensive 3D and 4D examples, including both synthetic phantom and real patient datasets. The efficiency of the proposed method shows that it only needs several milliseconds to generate organ meshes with 10K vertices, which has great potential to be used in real-time image guided radiation therapy (IGRT).« less
  4. A widely-regarded approach in Printed Circuit Board (PCB) reverse engineering (RE) uses non-destructive Xray computed tomography (CT) to produce three-dimensional volumes with several slices of data corresponding to multi-layered PCBs. The noise sources specific to X-ray CT and variability from designers make it difficult to acquire the features needed for the RE process. Hence, these X-ray CT images require specialized image processing techniques to examine the various features of a single PCB to later be translated to a readable CAD format. Previously, we presented an approach where the Hough Circle Transform was used for initial feature detection, and then an iterative false positive removal process was developed specifically for detecting vias on PCBs. Its performance was compared to an off-the-shelf application of the Mask Region-based Convolutional Network (M-RCNN). M-RCNN is an excellent deep learning approach that is able to localize and classify numerous objects of different scales within a single image. In this paper, we present a version of M-RCNN that is fine-tuned for via detection. Changes include polygon boundary annotations on the single X-ray images of vias for training and transfer learning to leverage the full potential of the network. We discuss the challenges of detecting vias using deepmore »learning, our working solution, and our experimental procedure. Additionally, we provide a qualitative evaluation of our approach and use quantitative metrics to compare the proposed approach with the previous iterative one.« less
  5. We develop a framework for reconstructing images that are sparse in an appropriate transform domain from polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and incident-energy spectrum are unknown. Assuming that the object that we wish to reconstruct consists of a single material, we obtain a parsimonious measurement-model parameterization by changing the integral variable from photon energy to mass attenuation, which allows us to combine the variations brought by the unknown incident spectrum and mass attenuation into a single unknown mass-attenuation spectrum function; the resulting measurement equation has the Laplace-integral form. The mass-attenuation spectrum is then expanded into basis functions using B splines of order one. We consider a Poisson noise model and establish conditions for biconvexity of the corresponding negative log-likelihood (NLL) function with respect to the density-map and mass-attenuation spectrum parameters. We derive a block-coordinate descent algorithm for constrained minimization of a penalized NLL objective function, where penalty terms ensure nonnegativity of the mass-attenuation spline coefficients and nonnegativity and gradient-map sparsity of the density-map image, imposed using a convex total-variation (TV) norm; the resulting objective function is biconvex. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step and a limited-memorymore »Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) iteration for updating the image and mass-attenuation spectrum parameters, respectively. We prove the Kurdyka-Łojasiewicz property of the objective function, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Our framework applies to other NLLs and signal-sparsity penalties, such as lognormal NLL and ℓ₁ norm of 2D discrete wavelet transform (DWT) image coefficients. Numerical experiments with simulated and real X-ray CT data demonstrate the performance of the proposed scheme.« less