skip to main content


Title: An Argon–Oxygen Covalent Bond in the ArOH + Molecular Ion
Abstract

The OH+cation is a well‐known diatomic for which the triplet (3Σ) ground state is 50.5 kcal mol−1more stable than its corresponding singlet (1Δ) excited state. However, the singlet forms a strong donor–acceptor bond to argon with a bond energy of 66.4 kcal mol−1at the CCSDT(Q)/CBS level, making the singlet ArOH+cation 3.9 kcal mol−1more stable than the lowest energy triplet complex. Both singlet and triplet isomers of this molecular ion were prepared in a cold molecular beam using different ion sources. Infrared photodissociation spectroscopy in combination with messenger atom tagging shows that the two spin isomers exhibit completely different spectral signatures. The ground state of ArOH+is the predicted singlet with a covalent Ar−O bond.

 
more » « less
NSF-PAR ID:
10055189
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
57
Issue:
18
ISSN:
1433-7851
Page Range / eLocation ID:
p. 5081-5085
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The OH+cation is a well‐known diatomic for which the triplet (3Σ) ground state is 50.5 kcal mol−1more stable than its corresponding singlet (1Δ) excited state. However, the singlet forms a strong donor–acceptor bond to argon with a bond energy of 66.4 kcal mol−1at the CCSDT(Q)/CBS level, making the singlet ArOH+cation 3.9 kcal mol−1more stable than the lowest energy triplet complex. Both singlet and triplet isomers of this molecular ion were prepared in a cold molecular beam using different ion sources. Infrared photodissociation spectroscopy in combination with messenger atom tagging shows that the two spin isomers exhibit completely different spectral signatures. The ground state of ArOH+is the predicted singlet with a covalent Ar−O bond.

     
    more » « less
  2. The anionic products following (H + H + ) abstraction from o -, m -, and p -methylphenol (cresol) are investigated using flowing afterglow-selected ion flow tube (FA-SIFT) mass spectrometry and anion photoelectron spectroscopy (PES). The PES of the multiple anion isomers formed in this reaction are reported, including those for the most abundant isomers, o -, m - and p -methylenephenoxide distonic radical anions. The electron affinity (EA) of the ground triplet electronic state of neutral m -methylenephenoxyl diradical was measured to be 2.227 ± 0.008 eV. However, the ground singlet electronic states of o - and p -methylenephenoxyl were found to be significantly stabilized by their resonance forms as a substituted cyclohexadienone, resulting in measured EAs of 1.217 ± 0.012 and 1.096 ± 0.007 eV, respectively. Upon electron photodetachment, the resulting neutral molecules were shown to have Franck–Condon active ring distortion vibrational modes with measured frequencies of 570 ± 180 and 450 ± 80 cm −1 for the ortho and para isomers, respectively. Photodetachment to excited electronic states was also investigated for all isomers, where similar vibrational modes were found to be Franck–Condon active, and singlet–triplet splittings are reported. The thermochemistry of these molecules was investigated using FA-SIFT combined with the acid bracketing technique to yield values of 341.4 ± 4.3, 349.1 ± 3.0, and 341.4 ± 4.3 kcal mol −1 for the o -, m -, and p -methylenephenol radicals, respectively. Construction of a thermodynamic cycle allowed for an experimental determination of the bond dissociation energy of the O–H bond of m -methylenephenol radical to be 86 ± 4 kcal mol −1 , while this bond is significantly weaker for the ortho and para isomers at 55 ± 5 and 52 ± 5 kcal mol −1 , respectively. Additional EAs and vibrational frequencies are reported for several methylphenyloxyl diradical isomers, the negative ions of which are also formed by the reaction of cresol with O − . 
    more » « less
  3. Abstract

    Pnictinidenes are an increasingly relevant species in main group chemistry and generally exhibit proclivity for the triplet electronic ground state. However, the elusive singlet electronic states are often desired for chemical applications. We predict the singlet‐triplet energy differences (ΔEST=ESinglet−ETriplet) of simple group 15 and 16 substituted pnictinidenes (Pn−R; Pn=P, As, Sb, or Bi) with highly reliable focal‐point analyses targeting the CCSDTQ/CBS level of theory. The only cases we predict to have favorable singlet states are P−PH2(−3.2 kcal mol−1) and P−NH2(−0.2 kcal mol−1). ΔESTtrends are discussed in light of the geometric predictions as well as qualitative natural bond order analysis to elucidate some of the important electronic structure features. Our work provides a rigorous benchmark for the ΔESTof fundamental Pn−R moieties and provides a firm foundation for the continued study of heavier pnictinidenes.

     
    more » « less
  4. Abstract

    Density functional theory and extrapolated CCSD(T) computations of several “anti‐Bredt” alkenes were carried to explore possible 1,2‐diyl “alkene” candidates with a triplet ground state. Ten candidates containing twisted double bonds at the bridgehead positions of bicyclic structures (1‐6) or adamantene (7‐10) derivatives were studied. Based on a combination of ring strain, rigid scaffolding, and steric crowding, four species were identified to have surprisingly low singlet‐triplet energy gaps (lower than 4 kcal/mol). Atert‐butyl substituted bicyclic structure (4) was identified to have a near‐zero singlet‐triplet energy gap, but no triplet ground‐state alkene was found. Ring strain energy (RSE) calculations, π‐orbital axis vector (POAV) analyses, and multiple linear regression models were performed to elucidate the geometric and energetic effects of double bond twisting in1‐10. Based on our computational exploration, it appears unlikely that there is a ground‐state triplet olefin.

     
    more » « less
  5. Abstract

    Although alkyl azides are known to typically form imines under direct irradiation, the product formation mechanism remains ambiguous as some alkyl azides also yield the corresponding triplet alkylnitrenes at cryogenic temperatures. The photoreactivity of 3‐azido‐3‐phenyl‐3H‐isobenzofuran‐1‐one (1) was investigated in solution and in cryogenic matrices. Irradiation (λ = 254 nm) of azide 1 in acetonitrile yielded a mixture of imines 2 and 3. Monitoring of the reaction progress using UV‐Vis absorption spectroscopy revealed an isosbestic point at 210 nm, indicating that the reaction proceeded cleanly. Similar results were observed for the photoreactivity of azide 1 in a frozen 2‐methyltetrahydrofuran (mTHF) matrix. Irradiation of azide 1 in an argon matrix at 6 K resulted in the disappearance of its IR bands with the concurrent appearance of IR bands corresponding to imines 2 and 3. Thus, it was theorized that azide 1 forms imines 2 and 3 via a concerted mechanism from its singlet excited state or through singlet alkylnitrene11N, which does not intersystem cross to its triplet configuration. This proposal was supported by CASPT2 calculations on a model system, which suggested that the energy gap between the singlet and triplet configurations of alkylnitrene 1N is 33 kcal/mol, thus making intersystem crossing inefficient.

     
    more » « less