skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Virtual Reality Education Modules for Digital Manufacturing Instruction
There is an imminent need to remedy the ‘skills gaps’ in the digital manufacturing (DM) sector as evident from the Bureau of Labor Statistics projections pointing to a decline in traditional manufacturing jobs accompanied by marked growth in digital- and computer-driven manufacturing jobs. With proven advantages such as cost benefits, material conservation, minimized labor, and enhanced precision, manufacturing industries worldwide are adapting to digital manufacturing standards on a large scale. In an effort to remedy the lack of well-defined DM career pathways and instructional framework, our NSF ATE (Advanced Technological Education) project MANEUVER (Manufacturing Education Using Virtual Environment Resources) is developing an innovative pedagogical approach using virtual reality (VR). This multimodal VR framework DM instruction targeted at 2-year and 4-year manufacturing programs, facilitates the development of VR modules for multiple modes such as desktop VR, Augmented VR, and Immersive VR. The advantages of the virtual reality framework for digital manufacturing education include: significant cost reduction, reduction in equipment and maintenance costs, ability to pre-visualize the product before manufacturing. This paper introduces the design and development process of VR education tool to simulate three different additive manufacturing machines, e.g., LutzBot™, FormLabs™, and UPrint™ and different 3D printing technologies e.g., fused deposition modeling, and selective laser sintering to allow the students experience the materials and equipment needed to create the same part using different types of equipment and different types of technology.  more » « less
Award ID(s):
1700674
PAR ID:
10055530
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study explains in detail a review of the graphics-based Virtual Reality (VR) hardware and software that were evaluated systematically for use in the NSF-funded study (Project MANEUVER). Project MANEUVER (Manufacturing Education Using Virtual Environment Resources), is developing an affordable VR framework to address the imminent demand for well- trained digital manufacturing (DM) technicians. This paper explains the various important factors including instructional, graphics-based, immersive, and interactive aspects that need to be carefully considered in the decision making process for the NSF Maneuver project, and this can serve as a reference for other similar projects. 3D Virtual worlds can be visualized by means of an extensive array of interfaces such as CAVE (Computer Assisted Virtual Environments), desktop VR, HMD (Head Mounted Displays), etc. The other factors that are important especially from a graphics perspective include: Hardware (CPU) and graphics requirements, cost, standalone possibility, software compatibility/support. 
    more » « less
  2. The objective of the Project MANEUVER (Manufacturing Education Using Virtual Environment Resources)1 is to develop an affordable virtual reality (VR) framework to address the imminent demand for well-trained digital manufacturing (DM) professionals. One important part of Project MANEUVER involves studying, evaluating, and identifying cost-efficient ways to generate 3D solid models for use in VR frameworks. To this end, this paper explains the research effort to find alternative ways so that 3D solid model could easily be generated without using any costly 3D scanning technology. In this study, the project team identified two software tools that could help the manufacturing professionals and educators generate a solid model of several parts. These two software tools namely, Qlone and 3DF Zephyr Free were selected for this study based on factors such as ease-of-use, cost-effectiveness, and the cognitive load on users. Using case-studies these two software tools were used to generate 3D solid models and prototypes. Finally, their pros and cons collected throughout this study were reported. 
    more » « less
  3. This Work-in-progress paper presents the pilot study of implementing a Virtual Reality (VR) environment to teach a junior-level Mechanical Engineering laboratory class at Prairie View A&M University. The target class is the manufacturing processes laboratory, which initially aimed to provide a hands-on experience with various manufacturing equipment. Providing students with systematic training followed by repetitive access to manufacturing equipment is required for longer knowledge retention and safety in laboratories. Yet, complications from the pandemic and other logistical events have negatively affected many universities' laboratory courses. The objective of this study is to examine the potential and effectiveness of the VR framework in engineering education. More specifically, this paper details the project's first phase, which includes the development and deployment of machining VR modules and preliminary outcomes. The VR module in this phase is based on the existing hammer fabrication project that requires the utilization of a milling machine, drill press, lathe, tap, and threading dies. A virtual replica of the machining laboratory was created using C# and the unity 3D game engine and published as an Android Package Kit (APK) for the META platform to be used in Oculus Quest 2 devices. The module is composed of three submodules, each corresponding to different hammer parts. These VR submodules replace traditional verbal and video training and are deployed in two semesters with 46 student participants. The student performance in project reports is compared with a control group for a quantitative assessment. Early conclusions indicate that the students remember the operation procedures and functions of equipment longer and are more confident in operating each manufacturing equipment leading to better quality parts and reports. 
    more » « less
  4. Familiarity with manufacturing environments is an essential aspect for many engineering students. However, such environments in real world often contain expensive equipment making them difficult to recreate in an educational setting. For this reason, simulated physical environments where the process is approximated using scaled-down representations are usually used in education. However, such physical simulations alone may not capture all the details of a real environment. Virtual reality (VR) technology nowadays allows for the creation of fully immersive environments, bringing simulations to the next level. Using rapidly advancing gaming technology, this research paper explores the applicability of creating multiplayer serious games for manufacturing simulation. First, we create and validate a hands-on activity that engages groups of students in the design and assembly of toy cars. Then, a corresponding multiplayer VR game is developed, which allows for the collaboration of multiple VR users in the same virtual environment. With a VR headset and proper infrastructure, a user can participate in a simulation game from any location. This paper explores whether multiplayer VR simulations could be used as an alternative to physical simulations. 
    more » « less
  5. Familiarity with manufacturing environments is an essential aspect for many engineering students. However, such environments in real world often contain expensive equipment making them difficult to recreate in an educational setting. For this reason, simulated physical environments where the process is approximated using scaled-down representations are usually used in education. However, such physical simulations alone may not capture all the details of a real environment. Virtual reality (VR) technology nowadays allows for the creation of fully immersive environments, bringing simulations to the next level. Using rapidly advancing gaming technology, this research paper explores the applicability of creating multiplayer serious games for manufacturing simulation. First, we create and validate a hands-on activity that engages groups of students in the design and assembly of toy cars. Then, a corresponding multiplayer VR game is developed, which allows for the collaboration of multiple VR users in the same virtual environment. With a VR headset and proper infrastructure, a user can participate in a simulation game from any location. This paper explores whether multiplayer VR simulations could be used as an alternative to physical simulations. 
    more » « less