This study explains in detail a review of the graphics-based Virtual Reality (VR) hardware and software that were evaluated systematically for use in the NSF-funded study (Project MANEUVER). Project MANEUVER (Manufacturing Education Using Virtual Environment Resources), is developing an affordable VR framework to address the imminent demand for well- trained digital manufacturing (DM) technicians. This paper explains the various important factors including instructional, graphics-based, immersive, and interactive aspects that need to be carefully considered in the decision making process for the NSF Maneuver project, and this can serve as a reference for other similar projects. 3D Virtual worlds can be visualized by means of an extensive array of interfaces such as CAVE (Computer Assisted Virtual Environments), desktop VR, HMD (Head Mounted Displays), etc. The other factors that are important especially from a graphics perspective include: Hardware (CPU) and graphics requirements, cost, standalone possibility, software compatibility/support.
more »
« less
A Comparative Study on Affordable Photogrammetry Tools.
The objective of the Project MANEUVER (Manufacturing Education Using Virtual Environment Resources)1 is to develop an affordable virtual reality (VR) framework to address the imminent demand for well-trained digital manufacturing (DM) professionals. One important part of Project MANEUVER involves studying, evaluating, and identifying cost-efficient ways to generate 3D solid models for use in VR frameworks. To this end, this paper explains the research effort to find alternative ways so that 3D solid model could easily be generated without using any costly 3D scanning technology. In this study, the project team identified two software tools that could help the manufacturing professionals and educators generate a solid model of several parts. These two software tools namely, Qlone and 3DF Zephyr Free were selected for this study based on factors such as ease-of-use, cost-effectiveness, and the cognitive load on users. Using case-studies these two software tools were used to generate 3D solid models and prototypes. Finally, their pros and cons collected throughout this study were reported.
more »
« less
- Award ID(s):
- 1700674
- PAR ID:
- 10055529
- Date Published:
- Journal Name:
- ASEE Annual Conference proceedings
- ISSN:
- 1524-4644
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There is an imminent need to remedy the ‘skills gaps’ in the digital manufacturing (DM) sector as evident from the Bureau of Labor Statistics projections pointing to a decline in traditional manufacturing jobs accompanied by marked growth in digital- and computer-driven manufacturing jobs. With proven advantages such as cost benefits, material conservation, minimized labor, and enhanced precision, manufacturing industries worldwide are adapting to digital manufacturing standards on a large scale. In an effort to remedy the lack of well-defined DM career pathways and instructional framework, our NSF ATE (Advanced Technological Education) project MANEUVER (Manufacturing Education Using Virtual Environment Resources) is developing an innovative pedagogical approach using virtual reality (VR). This multimodal VR framework DM instruction targeted at 2-year and 4-year manufacturing programs, facilitates the development of VR modules for multiple modes such as desktop VR, Augmented VR, and Immersive VR. The advantages of the virtual reality framework for digital manufacturing education include: significant cost reduction, reduction in equipment and maintenance costs, ability to pre-visualize the product before manufacturing. This paper introduces the design and development process of VR education tool to simulate three different additive manufacturing machines, e.g., LutzBot™, FormLabs™, and UPrint™ and different 3D printing technologies e.g., fused deposition modeling, and selective laser sintering to allow the students experience the materials and equipment needed to create the same part using different types of equipment and different types of technology.more » « less
-
Virtual Reality (VR) applications like OpenBrush offer artists access to 3D sketching tools within the digital 3D virtual space. These 3D sketching tools allow users to “paint” using virtual digital strokes that emulate real-world mark-making. Yet, users paint these strokes through (unimodal) VR controllers. Given that sketching in VR is a relatively nascent field, this paper investigates ways to expand our understanding of sketching in virtual space, taking full advantage of what an immersive digital canvas offers. Through a study conducted with the participation of artists, we identify potential methods for natural multimodal and unimodal interaction techniques in 3D sketching. These methods demonstrate ways to incrementally improve existing interaction techniques and incorporate artistic feedback into the design.more » « less
-
We have developed a series of course-based undergraduate research experiences for students integrated into course curriculum centered around the use of 3D visualization and virtual reality for science visualization. One project involves the creation and use of a volumetric renderer for hyperstack images, paired with a biology project in confocal microscopy. Students have worked to develop and test VR enabled tools for confocal microscopy visualization across headset based and CAVE based VR platforms. Two applications of the tool are presented: a rendering of Drosophila primordial germ cells coupled with automated detection and counting, and a database in development of 3D renderings of pollen grains. Another project involves the development and testing of point cloud renderers. Student work has focused on performance testing and enhancement across a range of 2D and 3D hardware, including native Quest apps. Through the process of developing these tools, students are introduced to scientific visualization concepts, while gaining practical experience with programming, software engineering, graphics, shader programming, and cross-platform design.more » « less
-
null (Ed.)There is an increasing trend of Virtual-Reality (VR) applications found in education, entertainment, and industry. Many of them utilize real world tools, environments, and interactions as bases for creation. However, creating such applications is tedious, fragmented, and involves expertise in authoring VR using programming and 3D-modelling softwares. This hinders VR adoption by decoupling subject matter experts from the actual process of authoring while increasing cost and time. We present VRFromX, an in-situ Do-It-Yourself (DIY) platform for content creation in VR that allows users to create interactive virtual experiences. Using our system, users can select region(s) of interest (ROI) in scanned point cloud or sketch in mid-air using a brush tool to retrieve virtual models and then attach behavioral properties to them. We ran an exploratory study to evaluate usability of VRFromX and the results demonstrate feasibility of the framework as an authoring tool. Finally, we implemented three possible use-cases to showcase potential applications.more » « less
An official website of the United States government

