The new material polypyrrole/MoS42−(MoS4‐Ppy), prepared by ion‐exchange of NO3‐ of NO3‐Ppy with MoS42−, displays high acid stability and excellent uptake for heavy metal ions such as Hg2+, Ag+, Cu2+, and Pb2+. The different maximum adsorption capacities (
- PAR ID:
- 10055555
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 28
- Issue:
- 20
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Heavy metal ions are highly toxic and widely spread as environmental pollutants. This work reports the development of two novel chelating adsorbents, based on the chemical modifications of graphene oxide and zirconium phosphate by functionalization with melamine-based chelating ligands for the effective and selective extraction of Hg( ii ) and Pb( ii ) from contaminated water sources. The first adsorbent melamine, thiourea-partially reduced graphene oxide (MT-PRGO) combines the heavier donor atom sulfur with the amine and triazine nitrogen's functional groups attached to the partially reduced GO nanosheets to effectively capture Hg( ii ) ions from water. The MT-PRGO adsorbent shows high efficiency for the extraction of Hg( ii ) with a capacity of 651 mg g −1 and very fast kinetics resulting in a 100% removal of Hg( ii ) from 500 ppb and 50 ppm concentrations in 15 second and 30 min, respectively. The second adsorbent, melamine zirconium phosphate (M-ZrP), is designed to combine the amine and triazine nitrogen's functional groups of melamine with the hydroxyl active sites of zirconium phosphate to effectively capture Pb( ii ) ions from water. The M-ZrP adsorbent shows exceptionally high adsorption affinity for Pb( ii ) with a capacity of 681 mg g −1 and 1000 mg g −1 using an adsorbent dose of 1 g L −1 and 2 g L −1 , respectively. The high adsorption capacity is also coupled with fast kinetics where the equilibrium time required for the 100% removal of Pb( ii ) from 1 ppm, 100 ppm and 1000 ppm concentrations is 40 seconds, 5 min and 30 min, respectively using an adsorbent dose of 1 g L −1 . In a mixture of six heavy metal ions at a concentration of 10 ppm, the removal efficiency is 100% for Pb( ii ), 99% for Hg( ii ), Cd( ii ) and Zn( ii ), 94% for Cu( ii ), and 90% for Ni( ii ) while at a higher concentration of 250 ppm the removal efficiency for Pb( ii ) is 95% compared to 23% for Hg( ii ) and less than 10% for the other ions. Because of the fast adsorption kinetics, high removal capacity, excellent regeneration, stability and reusability, the MT-PRGO and M-ZrP are proposed as top performing remediation adsorbents for the solid phase extraction of Hg( ii ) and Pb( ii ), respectively from contaminated water.more » « less
-
null (Ed.)A highly porous adsorbent based on a metal–organic framework was successfully designed and applied as an innovative adsorbent in the solid phase for the heavy metal removal. MIL-125 was densely decorated by 2-imino-4-thiobiuret functional groups, which generated a green, rapid, and efficacious adsorbent for the uptake of Hg( ii ) and Pb( ii ) from aqueous solutions. ITB-MIL-125 showed a high adsorption affinity toward mercury( ii ) ions of 946.0 mg g −1 due to covalent bond formation with accessible sulfur-based functionality. Different factors were studied, such as the initial concentration, pH, contact time, and competitive ions, under same circumstances at the room temperature. Moreover, the experimental adsorption data were in excellent agreement with the Langmuir adsorption isotherm and pseudo-second order kinetics. At a high concentration of 100 ppm mixture of six metals, ITB-MIL-125 exhibited a high adsorption capacity, reaching more than 82% of Hg( ii ) compared to 62%, 30%, 2%, 1.9%, and 1.6% for Pb( ii ), Cu( ii ), Cd( ii ), Ni( ii ), and Zn( ii ), respectively.more » « less
-
Abstract The removal of heavy metal contaminants from water is important for public health, and recently many two-dimensional (2D) materials with high specific surface areas are being studied as promising new active components in water purification. In particular, 2D MoS2nanosheets have been used for the removal of various heavy metals, but usually in either in complex geometries and composites, or in the chemically exfoliated metallic 1T-MoS2phase. However, the interaction of heavy metals dissolved in water with unmodified semiconducting 2H-MoS2is not well studied. In this paper, we report a detailed fundamental investigation of how Pb2+ions interact with 2H-MoS2. We observe small solid clusters that form on the MoS2surfaces after exposing them to Pb(NO3)2aqueous solutions as shown by atomic force microscopy and transmission electron microscopy, and for liquid phase exfoliated MoS2we observe the nanosheets precipitating out of dispersion along with insoluble solid granules. We use a combination of x-ray photoelectron spectroscopy and x-ray diffraction to identify these solid clusters and granules as primarily PbSO4with some PbMoO4. We put forth an interaction mechanism that involves MoS2defects acting as initiation sites for the partial dissolution in aqueous oxygenated conditions which produces MoO42−and SO42−ions to form the solids with Pb2+. These results are an important contribution to our fundamental understanding of how MoS2interacts with metal ions and will influence further efforts to exploit MoS2for water remediation applications.
-
Abstract Electrochemical sensors for mercury ion detection would ideally demonstrate wide linear detection ranges (LDRs), ultratrace sensitivity, and high selectivity. This work presents an electrochemical sensor based on metallic 1T phase tungsten disulfide (WS2) microflowers for the detection of trace levels of Hg2+ions with wide LDRs, ultratrace sensitivity, and high selectivity. Under optimized conditions, the sensor shows excellent sensitivities for Hg2+with LDRs of 1 n
m –1 µm and 0.1–1 mm . In addition to this, the limit of detection of the sensor toward Hg2+is 0.0798 nm or 79.8 pm , which is well below the guideline value recommended by the World Health Organization. The sensor exhibits excellent selectivity for Hg2+against other heavy metal ions including Cu2+, Fe3+, Ni2+, Pb2+, Cr3+, K+, Na+, Ag+, Sn2+, and Cd2+. The thus‐obtained excellent sensitivity and selectivity with wide LDRs can be attributed to the high conductivity, large surface area microflower structured 1T‐WS2, and the complexation of Hg2+ions with S2−. In addition to good repeatability, reproducibility, and stability, this sensor shows the practical feasibility of Hg2+detection in tap water suggesting a promising device for real applications. -
Abstract Rhenium is one of the most valuable elements found in nature, and its capture and recycle are highly desirable for resource recovery. However, the effective and efficient collection of this material from industrial waste remains quite challenging. Herein, a tetraphenylmethane‐based cationic polymeric network (CPN‐tpm) nanotrap is designed, synthesized, and evaluated for ReO4−recovery. 3D building units are used to construct imidazolium salt‐based polymers with positive charges, which yields a record maximum uptake capacity of 1133 mg g−1for ReO4−collection as well as fast kinetics ReO4−uptake. The sorption equilibrium is reached within 20 min and a
k dvalue of 8.5 × 105mL g−1is obtained. The sorption capacity of CPN‐tpm remains stable over a wide range of pH values and the removal efficiency exceeds 60% for pH levels below 2. Moreover, CPN‐tpm exhibits good recyclability for at least five cycles of the sorption–desorption process. This work provides a new route for constructing a kind of new high‐performance polymeric material for rhenium recovery and rhenium‐contained industrial wastewater treatment.