skip to main content


Title: Photopolymerized Triazole‐Based Glassy Polymer Networks with Superior Tensile Toughness
Abstract

Photopolymerization is a ubiquitous, indispensable technique widely applied in applications from coatings, inks, and adhesives to thermosetting restorative materials for medical implants, and the fabrication of complex macroscale, microscale, and nanoscale 3D architectures via additive manufacturing. However, due to the brittleness inherent in the dominant acrylate‐based photopolymerized networks, a significant need exists for higher performance resin/oligomer formulations to create tough, defect‐free, mechanically ductile, thermally and chemically resistant, high modulus network polymers with rapid photocuring kinetics. This study presents densely cross‐linked triazole‐based glassy photopolymers capable of achieving preeminent toughness of ≈70 MJ m−3and 200% strain at ambient temperature, comparable to conventional tough thermoplastics. Formed either via photoinitiated copper(I)‐catalyzed cycloaddition of monomers containing azide and alkyne groups (CuAAC) or via photoinitiated thiol‐ene reactions from monomers containing triazole rings, these triazole‐containing thermosets completely recover their original dimensions and mechanical behavior after repeated deformations of 50% strain in the glassy state over multiple thermal recovery–strain cycles.

 
more » « less
NSF-PAR ID:
10056372
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
28
Issue:
22
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A covalent adaptable network (CAN) with high glass transition temperature (Tg), superior mechanical properties including toughness and ductility, and unprecedented spatio‐temporally controlled dynamic behavior is prepared by introducing dynamic moieties capable of reversible addition fragmentation chain transfer (RAFT) into photoinitiated copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC)‐based networks. While the CuAAC polymerization yields glassy polymers composed of rigid triazole linkages with enhanced toughness, the RAFT moieties undergo bond exchange leading to stress relaxation upon light exposure. This unprecedented level of stress relaxation in the glassy state leads to numerous desirable attributes including glassy state photoinduced plasticity, toughness improvement during large deformation, and even photoinduced reversal of the effects of physical aging resulting in the rejuvenation of mechanical and thermodynamic properties in physically aged RAFT‐CuAAC networks that undergo bond exchange in the glassy state. Surprisingly, when an allyl‐sulfide‐containing azide monomer (AS‐N3) is used to form the network, the network exhibits up to 80% stress relaxation in the glassy state (Tg − 45 °C) under fixed displacement. In situ activation of RAFT during mechanical loading results in a 50% improvement in elongation to break and 40% improvement in the toughness when compared to the same network without light‐activation of RAFT during the tensile testing.

     
    more » « less
  2. Abstract

    [3+2] cycloadditions of nitroolefins have emerged as a selective and catalyst‐free alternative for the synthesis of 1,2,3‐triazoles from azides. We describe mechanistic studies into the cycloaddition/rearomatization reaction sequence. DFT calculations revealed a rate‐limiting cycloaddition step proceeding via an asynchronous TS with high kinetic selectivity for the 1,5‐triazole. Kinetic studies reveal a second‐order rate law, and13C kinetic isotopic effects at natural abundance were measured with a significant normal effect at the conjugated olefinic centers of 1.0158 and 1.0216 at the α and β‐carbons of β‐nitrostyrene. Distortion/interaction‐activation strain and energy decomposition analyses revealed that the major regioisomeric pathway benefits from an earlier and less‐distorted TS, while intermolecular interaction terms dominate the preference for 1,5‐ over 1,4‐cycloadducts. In addition, the major regioisomer also has more favorable electrostatic and dispersion terms. Additionally, while static DFT calculations suggest a concerted but highly asynchronousEi‐type HNO2elimination mechanism, quasiclassical direct‐dynamics calculations reveal the existence of a dynamic intermediate.

     
    more » « less
  3. Abstract

    Chemically inert, mechanically tough, cationic metallo‐polyelectrolytes were conceptualized and designed as durable anion‐exchange membranes (AEMs). Ring‐opening metathesis polymerization (ROMP) of cobaltocenium‐containing cyclooctene with triazole as the only linker group, followed by backbone hydrogenation, led to a new class of AEMs with a polyethylene‐like framework and alkaline‐stable cobaltocenium cation for ion transport. These AEMs exhibited excellent thermal, chemical and mechanical stability, as well as high ion conductivity.

     
    more » « less
  4. Abstract

    Chemically inert, mechanically tough, cationic metallo‐polyelectrolytes were conceptualized and designed as durable anion‐exchange membranes (AEMs). Ring‐opening metathesis polymerization (ROMP) of cobaltocenium‐containing cyclooctene with triazole as the only linker group, followed by backbone hydrogenation, led to a new class of AEMs with a polyethylene‐like framework and alkaline‐stable cobaltocenium cation for ion transport. These AEMs exhibited excellent thermal, chemical and mechanical stability, as well as high ion conductivity.

     
    more » « less
  5. Abstract

    Soft fiber‐reinforced polymers (FRPs), consisting of rubbery matrices and rigid fabrics, are widely utilized in industry because they possess high specific strength in tension while allowing flexural deformation under bending or twisting. Nevertheless, existing soft FRPs are relatively weak against crack propagation due to interfacial delamination, which substantially increases their risk of failure during use. In this work, a class of soft FRPs that possess high specific strength while simultaneously showing extraordinary crack resistance are developed. The strategy is to synthesize tough viscoelastic matrices from acrylate monomers in the presence of woven fabrics, which generates soft composites with a strong interface and interlocking structure. Such composites exhibit fracture energy,Γ, of up to 2500 kJ m−2, exceeding the toughest existing materials. Experimental elucidation shows that the fracture energy obeys a simple relation,Γ = W · lT, whereWis the volume‐weighted average of work of extension at fracture of the two components andlTis the force transfer length that scales with the square root of fiber/matrix modulus ratio. SuperiorΓis achieved through a combination of extraordinarily largelT(10–100 mm), resulting from the extremely high fiber/matrix modulus ratios (104–105), and the maximized energy dissipation density,W. The elucidated quantitative relationship provides guidance toward the design of extremely tough soft composites.

     
    more » « less