skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of Stealthy Attacks on Optimal Power Flow: A Simulink-Driven Formal Analysis
Optimal Power Flow (OPF) is a crucial part of the Energy Management System (EMS) as it determines individual generator outputs that minimize generation cost while satisfying transmission, generation, and system level operating constraints. OPF relies on a core EMS routine, namely state estimation, which computes system states, principally bus voltages/phase angles at the buses. However, state estimation is vulnerable to false data injection attacks in which an adversary can alter certain measurements to corrupt the estimator's solution without being detected. It is also shown that a stealthy attack on state estimation can increase the OPF cost. However, the impact of stealthy attacks on the economic and secure operation of the system cannot be comprehensively analyzed due to the very large size of the attack space. In this paper, we present a hybrid framework that combines formal analytics with Simulink-based system modeling to investigate the feasibility of stealthy attacks and their influence on OPF in a time-efficient manner. The proposed approach is illustrated on synthetic case studies demonstrating the impact of stealthy attacks in different attack scenarios. We also evaluate the impact analysis time by running experiments on standard IEEE test cases and the results show significant scalability of the framework.  more » « less
Award ID(s):
1657302 1929183
PAR ID:
10056668
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Dependable and Secure Computing
ISSN:
1545-5971
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The smart grid provides efficient and cost-effective management of the electric energy grid by allowing real-time monitoring, coordinating, and controlling the system using communication networks between physical components. This inherent complexity significantly increases the vulnerabilities and attack surface in the smart grid due to misconfigurations or the lack of security hardening. Therefore, it is important to ensure a secure and resilient operation of the smart grid by proactive identification of potential threats, impact assessment, and cost-efficient mitigation planning. This paper aims to achieve these goals through the development of an efficient security framework for the Energy Management System (EMS), a core smart grid component. In this paper, we present a framework that combines formal analytic with PowerWorld simulator which verifies the solution model to investigate the feasibility of false data injection attacks against contingency analysis in the power grid. We evaluate the impact of such attacks by running experiments using synthetic data on the standard IEEE test cases. 
    more » « less
  2. A composite detection technique against stealthy data manipulations is developed in this paper for distribution networks that are low observable. Attack detection strategies typically rely on state estimation which becomes challenging when limited measurements are available. In this paper, a modified matrix completion approach provides estimates of the system state and its error variances for the locations in the network where measurements are unavailable. Using the error statistics and their corresponding state estimates, bad data detection can be carried out using the chi-squared test. The proposed approach employs a moving target defence strategy (MTD) where the network parameters are perturbed through distributed flexible AC transmission system (D-FACTS) devices such that stealthy data manipulation attacks can be exposed in the form of bad data. Thus, the bad data detection approach developed in this paper can detect stealthy attacks using the MTD strategy. This technique is implemented on 37-bus and 123-bus three-phase unbalanced distribution networks to demonstrate the attack detection accuracy even for a low observable system. 
    more » « less
  3. Cyber-physical systems (CPS) have been increasingly attacked by hackers. CPS are especially vulnerable to attackers that have full knowledge of the system's configuration. Therefore, novel anomaly detection algorithms in the presence of a knowledgeable adversary need to be developed. However, this research is still in its infancy due to limited attack data availability and test beds. By proposing a holistic attack modeling framework, we aim to show the vulnerability of existing detection algorithms and provide a basis for novel sensor-based cyber-attack detection. Stealthy Attack GEneration (SAGE) for CPS serves as a tool for cyber-risk assessment of existing systems and detection algorithms for practitioners and researchers alike. Stealthy attacks are characterized by malicious injections into the CPS through input, output, or both, which produce bounded changes in the detection residue. By using the SAGE framework, we generate stealthy attacks to achieve three objectives: (i) Maximize damage, (ii) Avoid detection, and (iii) Minimize the attack cost. Additionally, an attacker needs to adhere to the physical principles in a CPS (objective iv). The goal of SAGE is to model worst-case attacks, where we assume limited information asymmetries between attackers and defenders (e.g., insider knowledge of the attacker). Those worst-case attacks are the hardest to detect, but common in practice and allow understanding of the maximum conceivable damage. We propose an efficient solution procedure for the novel SAGE optimization problem. The SAGE framework is illustrated in three case studies. Those case studies serve as modeling guidelines for the development of novel attack detection algorithms and comprehensive cyber-physical risk assessment of CPS. The results show that SAGE attacks can cause severe damage to a CPS, while only changing the input control signals minimally. This avoids detection and keeps the cost of an attack low. This highlights the need for more advanced detection algorithms and novel research in cyber-physical security. 
    more » « less
  4. We consider the problem of network-based attacks, such as Man-in-the-Middle attacks, on standard state estimators. To ensure graceful control degradation in the presence of attacks, existing results impose very strict integrity requirements on the number of noncompromised sensors. We study the effects of sporadic data integrity enforcement, such as message authentication, on control performance under stealthy attacks. We show that even with sporadic data integrity guarantees, the attacker cannot introduce an unbounded state estimation error while remaining stealthy. We present a design-time framework to derive safe integrity enforcement policies, and illustrate its use; we show that with even 20% of authenticated messages we can ensure satisfiable state estimation errors under attacks. 
    more » « less
  5. Falsified data from compromised Phasor Measurement Units (PMUs) in a smart grid induce Energy Management Systems (EMS) to have an inaccurate estimation of the state of the grid, disrupting various operations of the power grid. Moreover, the PMUs deployed at the distribution layer of a smart grid show dynamic fluctuations in their data streams, which make it extremely challenging to design effective learning frameworks for anomaly based attack detection. In this paper, we propose a noise resilient learning framework for anomaly based attack detection specifically for distribution layer PMU infrastructure, that show real time indicators of data falsifications attacks while offsetting the effect of false alarms caused by the noise. Specifically, we propose a feature extraction framework that uses some Pythagorean Means of the active power from a cluster of PMUs, reducing multi-dimensional nature of the PMU data streams via quick big data summarization. We also propose a robust and noise resilient methodology for learning thresholds based on generalized robust estimation theory of our invariant feature. We experimentally validate our approach and demonstrate improved reliability performance using two completely different datasets collected from real distribution level PMU infrastructures. 
    more » « less