skip to main content

Title: Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion based Perception in Autonomous Driving Under Physical-World Attacks
In Autonomous Driving (AD) systems, perception is both security and safety critical. Despite various prior studies on its security issues, all of them only consider attacks on cameraor LiDAR-based AD perception alone. However, production AD systems today predominantly adopt a Multi-Sensor Fusion (MSF) based design, which in principle can be more robust against these attacks under the assumption that not all fusion sources are (or can be) attacked at the same time. In this paper, we present the first study of security issues of MSF-based perception in AD systems. We directly challenge the basic MSF design assumption above by exploring the possibility of attacking all fusion sources simultaneously. This allows us for the first time to understand how much security guarantee MSF can fundamentally provide as a general defense strategy for AD perception. We formulate the attack as an optimization problem to generate a physically-realizable, adversarial 3D-printed object that misleads an AD system to fail in detecting it and thus crash into it. To systematically generate such a physical-world attack, we propose a novel attack pipeline that addresses two main design challenges: (1) non-differentiable target camera and LiDAR sensing systems, and (2) non-differentiable cell-level aggregated features popularly used in LiDAR-based AD more » perception. We evaluate our attack on MSF algorithms included in representative open-source industry-grade AD systems in real-world driving scenarios. Our results show that the attack achieves over 90% success rate across different object types and MSF algorithms. Our attack is also found stealthy, robust to victim positions, transferable across MSF algorithms, and physical-world realizable after being 3D-printed and captured by LiDAR and camera devices. To concretely assess the end-to-end safety impact, we further perform simulation evaluation and show that it can cause a 100% vehicle collision rate for an industry-grade AD system. We also evaluate and discuss defense strategies. « less
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1850533 1932464
Publication Date:
NSF-PAR ID:
10281627
Journal Name:
IEEE Symposium on Security and Privacy (S&P)
Sponsoring Org:
National Science Foundation
More Like this
  1. For high-level Autonomous Vehicles (AV), localization is highly security and safety critical. One direct threat to it is GPS spoofing, but fortunately, AV systems today predominantly use Multi-Sensor Fusion (MSF) algorithms that are generally believed to have the potential to practically defeat GPS spoofing. However, no prior work has studied whether today’s MSF algorithms are indeed sufficiently secure under GPS spoofing, especially in AV settings. In this work, we perform the first study to fill this critical gap. As the first study, we focus on a production-grade MSF with both design and implementation level representativeness, and identify two AV-specific attack goals, off-road and wrong-way attacks. To systematically understand the security property, we first analyze the upper-bound attack effectiveness, and discover a take-over effect that can fundamentally defeat the MSF design principle. We perform a cause analysis and find that such vulnerability only appears dynamically and non-deterministically. Leveraging this insight, we design FusionRipper, a novel and general attack that opportunistically captures and exploits take-over vulnerabilities. We evaluate it on 6 real-world sensor traces, and find that FusionRipper can achieve at least 97% and 91.3% success rates in all traces for off-road and wrongway attacks respectively. We also find that it ismore »highly robust to practical factors such as spoofing inaccuracies. To improve the practicality, we further design an offline method that can effectively identify attack parameters with over 80% average success rates for both attack goals, with the cost of at most half a day. We also discuss promising defense directions.« less
  2. Automated Lane Centering (ALC) systems are convenient and widely deployed today, but also highly security and safety critical. In this work, we are the first to systematically study the security of state-of-the-art deep learning based ALC systems in their designed operational domains under physical-world adversarial attacks. We formulate the problem with a safetycritical attack goal, and a novel and domain-specific attack vector: dirty road patches. To systematically generate the attack, we adopt an optimization-based approach and overcome domain-specific design challenges such as camera frame interdependencies due to attack-influenced vehicle control, and the lack of objective function design for lane detection models. We evaluate our attack on a production ALC using 80 scenarios from real-world driving traces. The results show that our attack is highly effective with over 97.5% success rates and less than 0.903 sec average success time, which is substantially lower than the average driver reaction time. This attack is also found (1) robust to various real-world factors such as lighting conditions and view angles, (2) general to different model designs, and (3) stealthy from the driver’s view. To understand the safety impacts, we conduct experiments using software-in-the-loop simulation and attack trace injection in a real vehicle. The resultsmore »show that our attack can cause a 100% collision rate in different scenarios, including when tested with common safety features such as automatic emergency braking. We also evaluate and discuss defenses.« less
  3. Autonomous vehicles (AVs), equipped with numerous sensors such as camera, LiDAR, radar, and ultrasonic sensor, are revolutionizing the transportation industry. These sensors are expected to sense reliable information from a physical environment, facilitating the critical decision-making process of the AVs. Ultrasonic sensors, which detect obstacles in a short distance, play an important role in assisted parking and blind spot detection events. However, due to their weak security level, ultrasonic sensors are particularly vulnerable to signal injection attacks, when the attackers inject malicious acoustic signals to create fake obstacles and intentionally mislead the vehicles to make wrong decisions with disastrous aftermath. In this paper, we systematically analyze the attack model of signal injection attacks toward moving vehicles. By considering the potential threats, we propose SoundFence, a physical-layer defense system which leverages the sensors’ signal processing capability without requiring any additional equipment. SoundFence verifies the benign measurement results and detects signal injection attacks by analyzing sensor readings and the physical-layer signatures of ultrasonic signals. Our experiment with commercial sensors shows that SoundFence detects most (more than 95%) of the abnormal sensor readings with very few false alarms, and it can also accurately distinguish the real echo from injected signals to identify injectionmore »attacks.« less
  4. Autonomous vehicles are becoming increasingly popular, but their reliance on computer systems to sense and operate in the physical world introduces new security risks. In this paper, we show that the location privacy of an autonomous vehicle may be compromised by software side-channel attacks if localization software shares a hardware platform with an attack program. In particular, we demonstrate that a cache side-channel attack can be used to infer the route or the location of a vehicle that runs the adaptive Monte-Carlo localization (AMCL) algorithm. The main contributions of the paper are as follows. First, we show that adaptive behaviors of perception and control algorithms may introduce new side-channel vulnerabilities that reveal the physical properties of a vehicle or its environment. Second, we introduce statistical learning models that infer the AMCL algorithm's state from cache access patterns and predict the route or the location of a vehicle from the trace of the AMCL state. Third, we implement and demonstrate the attack on a realistic software stack using real-world sensor data recorded on city roads. Our findings suggest that autonomous driving software needs strong timing-channel protection for location privacy.
  5. Autonomous vehicles are becoming increasingly popular, but their reliance on computer systems to sense and operate in the physical world introduces new security risks. In this paper, we show that the location privacy of an autonomous vehicle may be compromised by software side-channel attacks if localization software shares a hardware platform with an attack program. In particular, we demonstrate that a cache side-channel attack can be used to infer the route or the location of a vehicle that runs the adaptive Monte-Carlo localization (AMCL) algorithm. The main contributions of the paper are as follows. First, we show that adaptive behaviors of perception and control algorithms may introduce new side-channel vulnerabilities that reveal the physical properties of a vehicle or its environment. Second, we introduce statistical learning models that infer the AMCL algorithm's state from cache access patterns and predict the route or the location of a vehicle from the trace of the AMCL state. Third, we implement and demonstrate the attack on a realistic software stack using real-world sensor data recorded on city roads. Our findings suggest that autonomous driving software needs strong timing-channel protection for location privacy.