Thermal energy harvesting from natural resources and waste heat is becoming critical due to ever-increasing environmental concerns. However, so far, available thermal energy harvesting technologies have only been able to generate electricity from large temperature gradients. Here, we report a fundamental breakthrough in low-grade thermal energy harvesting and demonstrate a device based on the thermomagnetic effect that uses ambient conditions as the heat sink and operates from a heat source at temperatures as low as 24 °C. This concept can convert temperature gradients as low as 2 °C into electricity while operating near room temperature. The device is found to exhibit a power density (power per unit volume of active material) of 105 μW cm −3 at a temperature difference of 2 °C, which increases to 465 μW cm −3 at a temperature difference of 10 °C. The power density increases by 2.5 times in the presence of wind with a speed of 2.0 m s −1 . This advancement in thermal energy harvesting technology will have a transformative effect on renewable energy generation and in reducing global warming.
more »
« less
Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films
The need for efficient energy utilization is driving research into ways to harvest ubiquitous waste heat. Here, we explore pyroelectric energy conversion from low-grade thermal sources that exploits strong field- and temperature-induced polarization susceptibilities in the relaxor ferroelectric 0.68Pb(Mg1/3Nb2/3)O3–0.32PbTiO3. Electric-field-driven enhancement of the pyroelectric response (as large as − 550 μC m−2 K−1) and suppression of the dielectric response (by 72%) yield substantial figures of merit for pyroelectric energy conversion. Field- and temperature-dependent pyroelectric measurements highlight the role of polarization rotation and field-induced polarization in mediating these effects. Solid-state, thin-film devices that convert lowgrade heat into electrical energy are demonstrated using pyroelectric Ericsson cycles, and optimized to yield maximum energy density, power density and efficiency of 1.06 J cm−3, 526 W cm−3 and 19% of Carnot, respectively; the highest values reported to date and equivalent to the performance of a thermoelectric with an effective ZT ≈ 1.16 for a temperature change of 10 K. Our findings suggest that pyroelectric devices may be competitive with thermoelectric devices for low-grade thermal harvesting.
more »
« less
- Award ID(s):
- 1708615
- PAR ID:
- 10056850
- Date Published:
- Journal Name:
- Nature Materials
- ISSN:
- 1476-1122
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Low efficiency in recovering low-grade heat remains unresolved despite decades of attempts. In this research, we designed and fabricated a novel thermo-osmotic ionogel (TOI) composite to recover low-grade heat to generate electric power through a thermo-induced ion gradient and selective ion diffusion. The TOI composite was assembled with a crystalline ionogel (polymer-confined LiNO 3 –3H 2 O) film, ion selective membrane, and hydrogel film. With a 90 °C heat supply, the single TOI composite produced a high open-circuit voltage of 0.52 V, a differential thermal voltage of ∼26 mV K −1 , a peak power density of 0.4 W m −2 , and a ground-breaking peak energy conversion efficiency of 11.17%. Eight pieces of such a TOI composite were connected in series, demonstrating an open-circuit voltage of 3.25 volts. Such a TOI system was also demonstrated to harvest body temperature for powering a LED, opening numerous opportunities in powering wearable devices.more » « less
-
There is growing interest in the study of thin-film pyroelectric materials because of their potential for high performance thermal-energy conversion, thermal sensing, and beyond. Electrothermal susceptibilities, such as pyroelectricity, are known to be enhanced in proximity to polar instabilities, and this is conventionally accomplished by positioning the material close to a temperature-driven ferroelectric-to-paraelectric phase transition. The high Curie temperature (TC) for many ferroelectrics, however, limits the utility of these materials at room-temperature. Here, the nature of pyroelectric response in thin films of the widely studied multiferroic Bi1−xLaxFeO3 (x = 0–0.45) is probed. While BiFeO3 itself has a high TC, lanthanum substitution results in a chemically induced lowering of the ferroelectric-to-paraelectric and structural-phase transition. The effect of isovalent lanthanum substitution on the structural, dielectric, ferroelectric, and pyroelectric response is investigated using reciprocal-space-mapping studies; field-, frequency-, and temperature-dependent electrical measurements; and phase-sensitive pyroelectric measurements, respectively. While BiFeO3 itself has a rather small pyroelectric coefficient at room temperature (∼−40 µC/m2 K), 15% lanthanum substitution results in an enhancement of the pyroelectric coefficient by 100% which is found to arise from a systematic lowering of TC.more » « less
-
Abstract Flexible thermoelectric devices (TEDs) exhibit adaptability to curved surfaces, holding significant potential for small‐scale power generation and thermal management. However, they often compromise stretchability, energy conversion, or robustness, thus limiting their applications. Here, the implementation of 3D soft architectures, multifunctional composites, self‐healing liquid metal conductors, and rigid semiconductors is introduced to overcome these challenges. These TEDs are extremely stretchable, functioning at strain levels as high as 230%. Their unique design, verified through multiphysics simulations, results in a considerably high power density of 115.4 µW cm⁻2at a low‐temperature gradient of 10 °C. This is achieved through 3D printing multifunctional elastomers and examining the effects of three distinct thermal insulation infill ratios (0%, 12%, and 100%) on thermoelectric energy conversion and structural integrity. The engineered structure is lighter and effectively maintains the temperature gradient across the thermoelectric semiconductors, thereby resulting in higher output voltage and improved heating and cooling performance. Furthermore, these thermoelectric generators show remarkable damage tolerance, remaining fully functional even after multiple punctures and 2000 stretching cycles at 50% strain. When integrated with a 3D‐printed heatsink, they can power wearable sensors, charge batteries, and illuminate LEDs by scavenging body heat at room temperature, demonstrating their application as self‐sustainable electronics.more » « less
-
Abstract: Thermoelectricity allows direct conversion between heat and electricity, providing alternatives for green energy technologies. Despite these advantages, for most materials the energy conversion efficiency is limited by the tendency for the electrical and thermal conductivity to be proportional to each other and the Seebeck coefficient to be small. Here we report counter examples, where the heavy fermion compounds Yb TM 2 Zn 20 ( TM = Co, Rh, Ir) exhibit enhanced thermoelectric performance including a large power factor ( PF = 74 μW/cm-K 2 ; TM = Ir) and a high figure of merit ( ZT = 0.07; TM = Ir) at 35 K. The combination of the strongly hybridized electronic state originating from the Yb f -electrons and the novel structural features (large unit cell and possible soft phonon modes) leads to high power factors and small thermal conductivity values. This demonstrates that with further optimization these systems could provide a platform for the next generation of low temperature thermoelectric materials.more » « less
An official website of the United States government

