skip to main content


This content will become publicly available on August 30, 2025

Title: 3D Soft Architectures for Stretchable Thermoelectric Wearables with Electrical Self‐Healing and Damage Tolerance
Abstract

Flexible thermoelectric devices (TEDs) exhibit adaptability to curved surfaces, holding significant potential for small‐scale power generation and thermal management. However, they often compromise stretchability, energy conversion, or robustness, thus limiting their applications. Here, the implementation of 3D soft architectures, multifunctional composites, self‐healing liquid metal conductors, and rigid semiconductors is introduced to overcome these challenges. These TEDs are extremely stretchable, functioning at strain levels as high as 230%. Their unique design, verified through multiphysics simulations, results in a considerably high power density of 115.4 µW cm⁻2at a low‐temperature gradient of 10 °C. This is achieved through 3D printing multifunctional elastomers and examining the effects of three distinct thermal insulation infill ratios (0%, 12%, and 100%) on thermoelectric energy conversion and structural integrity. The engineered structure is lighter and effectively maintains the temperature gradient across the thermoelectric semiconductors, thereby resulting in higher output voltage and improved heating and cooling performance. Furthermore, these thermoelectric generators show remarkable damage tolerance, remaining fully functional even after multiple punctures and 2000 stretching cycles at 50% strain. When integrated with a 3D‐printed heatsink, they can power wearable sensors, charge batteries, and illuminate LEDs by scavenging body heat at room temperature, demonstrating their application as self‐sustainable electronics.

 
more » « less
PAR ID:
10538132
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thermoelectric materials enable the direct conversion of thermal energy to electricity. Ambient heat energy harvesting could be an effective route to convert buildings from being energy consumers to energy harvesters, thus making them more sustainable. There exists a relatively stable temperature gradient (storing energy) between the internal and external walls of buildings which can be utilized to generate meaningful energy (that is, electricity) using the thermoelectric principle. This could ultimately help reduce the surface temperatures and energy consumption of buildings, especially in urban areas. In this paper, ongoing work on developing and characterizing a cement-based thermoelectric material is presented. Samples are fabricated using cement as a base material and different metal oxides (Bi₂O₃ and Fe₂O₃) are added to enhance their thermoelectric properties. A series of characterization tests are undertaken on the prepared samples to determine their Seebeck coefficient, electrical and thermal conductivity. The study shows that cement paste with additives possesses physical properties in the range of semiconductors whereby, initially, the resistivity values are low but with time, they increase gradually, thus resulting in lower electrical conductivity. The thermal conductivity of the cement paste with additives is lower than the control sample. Seebeck coefficient values were found to be relatively unstable during the initial set of measurements because the internal and external environment needed to be kept in a thermally stable condition to achieve steady results. The detailed analysis helped determine and eliminate the source of errors in the characterization process and obtain repeatable results. Parameters such as moisture content, temperature, and age were found to have a significant impact on the properties of cement-based thermoelectric materials. 
    more » « less
  2. Abstract

    Lanthanide monopnictide (Ln‐V) nanoparticles embedded within III–V semiconductors, specifically in In0.53Ga0.47As, are interesting for thermoelectric applications. The electrical conductivity, Seebeck coefficient, and power factor of co‐deposited TbAs:InGaAs over the temperature range of 300–700 K are reported. Using Boltzmann transport theory, it is shown that TbAs nanoparticles in InGaAs matrix give rise to an improved Seebeck coefficient due to an increase in scattering, such as ionized impurity scattering. TbAs nanoparticles act as electron donors in the InGaAs matrix while having minimal effects on electron mobility, and maintain high electrical conductivity. There is further evidence that TbAs nanoparticles act as energy dependent electron scattering sites, contributing to an increased Seebeck coefficient at high temperature. These results show that TbAs:InGaAs nanocomposite thinfilms containing low concentrations, specifically 0.78% TbAs:InGaAs, display high electrical conductivity, reduced thermal conductivity, improved Seebeck coefficient, and demonstrated ZT of power factors as high as 7.1 × 10−3W K−2m−1and ZT as high as 1.6 at 650 K.

     
    more » « less
  3. Abstract: Thermoelectricity allows direct conversion between heat and electricity, providing alternatives for green energy technologies. Despite these advantages, for most materials the energy conversion efficiency is limited by the tendency for the electrical and thermal conductivity to be proportional to each other and the Seebeck coefficient to be small. Here we report counter examples, where the heavy fermion compounds Yb TM 2 Zn 20 ( TM = Co, Rh, Ir) exhibit enhanced thermoelectric performance including a large power factor ( PF = 74 μW/cm-K 2 ; TM = Ir) and a high figure of merit ( ZT = 0.07; TM = Ir) at 35 K. The combination of the strongly hybridized electronic state originating from the Yb f -electrons and the novel structural features (large unit cell and possible soft phonon modes) leads to high power factors and small thermal conductivity values. This demonstrates that with further optimization these systems could provide a platform for the next generation of low temperature thermoelectric materials. 
    more » « less
  4. Thermoelectric generators are being used as a successful power sources for space applications since 1960's in radioisotope-thermoelectric generators (RTGs) to supply power to space systems in deep space. RTG’s are capable of directly converting heat energy to uninterrupted electric power with no moving parts involved. The ability of thermoelectric materials to convert heat energy to electrical energy is defined by a dimensionless value known as the thermoelectric figure of merit (ZT) 1. This value quantifies the maximum thermoelectric efficiency of a thermoelectric generator (TEG) and is calculated by ZT= S2σT/κ, where S, σ, T, and κ represent Seebeck coefficient, electrical conductivity, temperature, and thermal conductivity, respectively. Among all of the thermoelectric materials, Bi2Te3 and its alloys have been reported to have high ZT values for low temperature energy harvesting and are highly suitable for powering wearables and self-powering sensors2, 3. 
    more » « less
  5. Abstract

    Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal‐to‐electrical energy conversion. The thermoelectric layers are composed of semiconductors embedded within a 3D printed elastomer matrix and wired together with eutectic gallium–indium (EGaIn) liquid metal interconnects. This layer is covered on both sides with LCE, which alternately heats and cools to achieve cyclical bending actuation in response to voltage‐controlled Peltier activation. Moreover, the thermoelectric layer can harvest energy from thermal gradients between the two LCE layers through the Seebeck effect, allowing for regenerative energy harvesting. As demonstrations, first, closed‐loop control of the transducer is performed to rapidly track a changing actuator position. Second, a soft robotic walker that is capable of walking toward a heat source and harvesting energy is introduced. Lastly, phototropic‐inspired autonomous deflection of the limbs toward a heat source is shown, demonstrating an additional method to increase energy recuperation efficiency for soft systems.

     
    more » « less