skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reasoning Geometric Commonsense for Single-view 3D Scene Parsing
This paper presents a unified grammatical framework capable of reconstructing a variety of scene types (e.g., urban, campus, country etc.) from a single input image. The key idea of our approach is to study a novel commonsense reasoning framework that mainly exploits two types of prior knowledge: (i) prior distributions over a single dimension of objects, e.g., that the length of a sedan is about 4.5 meters; (ii) pair-wise relationships between the dimensions of scene entities, e.g., that the length of a sedan is shorter than a bus. These unary or relative geometric knowledge, once extracted, are fairly stable across different types of natural scenes, and are informative for enhancing the understanding of various scenes in both 2D images and 3D world. Methodologically, we propose to construct a hierarchical graph representation as a unified representation of the input image and related geometric knowledge. We formulate these objectives with a unified probabilistic formula and develop a data-driven Monte Carlo method to infer the optimal solution with both bottom-to-up and top-down computations. Results with comparisons on public datasets showed that our method clearly outperforms the alternative methods.  more » « less
Award ID(s):
1657600
PAR ID:
10056959
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Joint Conference on Artificial Intelligence
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Internet image collections containing photos captured by crowds of photographers show promise for enabling digital exploration of large‐scale tourist landmarks. However, prior works focus primarily on geometric reconstruction and visualization, neglecting the key role of language in providing a semantic interface for navigation and fine‐grained understanding. In more constrained 3D domains, recent methods have leveraged modern vision‐and‐language models as a strong prior of 2D visual semantics. While these models display an excellent understanding of broad visual semantics, they struggle with unconstrained photo collections depicting such tourist landmarks, as they lack expert knowledge of the architectural domain and fail to exploit the geometric consistency of images capturing multiple views of such scenes. In this work, we present a localization system that connects neural representations of scenes depicting large‐scale landmarks with text describing a semantic region within the scene, by harnessing the power of SOTA vision‐and‐language models with adaptations for understanding landmark scene semantics. To bolster such models with fine‐grained knowledge, we leverage large‐scale Internet data containing images of similar landmarks along with weakly‐related textual information. Our approach is built upon the premise that images physically grounded in space can provide a powerful supervision signal for localizing new concepts, whose semantics may be unlocked from Internet textual metadata with large language models. We use correspondences between views of scenes to bootstrap spatial understanding of these semantics, providing guidance for 3D‐compatible segmentation that ultimately lifts to a volumetric scene representation. To evaluate our method, we present a new benchmark dataset containing large‐scale scenes with ground‐truth segmentations for multiple semantic concepts. Our results show that HaLo‐NeRF can accurately localize a variety of semantic concepts related to architectural landmarks, surpassing the results of other 3D models as well as strong 2D segmentation baselines. Our code and data are publicly available at https://tau‐vailab.github.io/HaLo‐NeRF/ 
    more » « less
  2. We introduce a method for novel view synthesis given only a single wide-baseline stereo image pair. In this challenging regime, 3D scene points are regularly observed only once, requiring prior-based reconstruction of scene geometry and appearance. We find that existing approaches to novel view synthesis from sparse observations fail due to recovering incorrect 3D geometry and due to the high cost of differentiable rendering that precludes their scaling to large-scale training. We take a step towards resolving these shortcomings by formulating a multi-view transformer encoder, proposing an efficient, image-space epipolar line sampling scheme to assemble image features for a target ray, and a lightweight cross-attention-based renderer. Our contributions enable training of our method on a large-scale real-world dataset of indoor and outdoor scenes. We demonstrate that our method learns powerful multi-view geometry priors while reducing both rendering time and memory footprint. We conduct extensive comparisons on held-out test scenes across two real-world datasets, significantly outperforming prior work on novel view synthesis from sparse image observations and achieving multi-view-consistent novel view synthesis. 
    more » « less
  3. In this work, we propose a novel method to supervise 3D Gaussian Splatting (3DGS) scenes using optical tactile sensors. Optical tactile sensors have become widespread in their use in robotics for manipulation and object representation; however, raw optical tactile sensor data is unsuitable to directly supervise a 3DGS scene. Our representation leverages a Gaussian Process Implicit Surface to implicitly represent the object, combining many touches into a unified representation with uncertainty. We merge this model with a monocular depth estimation network, which is aligned in a two stage process, coarsely aligning with a depth camera and then finely adjusting to match our touch data. For every training image, our method produces a corresponding fused depth and uncertainty map. Utilizing this additional information, we propose a new loss function, variance weighted depth supervised loss, for training the 3DGS scene model. We leverage the DenseTact optical tactile sensor and RealSense RGB-D camera to show that combining touch and vision in this manner leads to quantitatively and qualitatively better results than vision or touch alone in a few-view scene syntheses on opaque as well as on reflective and transparent objects. Please see our project page at armlabstanford.github.io/touch-gs 
    more » « less
  4. The ability for computational agents to reason about the high-level content of real world scene images is important for many applications. Existing attempts at complex scene understanding lack representational power, efficiency, and the ability to create robust meta- knowledge about scenes. We introduce scenarios as a new way of representing scenes. The scenario is an interpretable, low-dimensional, data-driven representation consisting of sets of frequently co-occurring objects that is useful for a wide range of scene under- standing tasks. Scenarios are learned from data using a novel matrix factorization method which is integrated into a new neural network architecture, the Scenari-oNet. Using ScenarioNet, we can recover semantic in- formation about real world scene images at three levels of granularity: 1) scene categories, 2) scenarios, and 3) objects. Training a single ScenarioNet model enables us to perform scene classification, scenario recognition, multi-object recognition, content-based scene image retrieval, and content-based image comparison. ScenarioNet is efficient because it requires significantly fewer parameters than other CNNs while achieving similar performance on benchmark tasks, and it is interpretable because it produces evidence in an understandable format for every decision it makes. We validate the utility of scenarios and ScenarioNet on a diverse set of scene understanding tasks on several benchmark datasets. 
    more » « less
  5. In this work, we address the lack of 3D understanding of generative neural networks by introducing a persistent 3D feature embedding for view synthesis. To this end, we propose DeepVoxels, a learned representation that encodes the view-dependent appearance of a 3D scene without having to explicitly model its geometry. At its core, our approach is based on a Cartesian 3D grid of persistent embedded features that learn to make use of the underlying 3D scene structure. Our approach combines insights from 3D geometric computer vision with recent advances in learning image-to-image mappings based on adversarial loss functions. DeepVoxels is supervised, without requiring a 3D reconstruction of the scene, using a 2D re-rendering loss and enforces perspective and multi-view geometry in a principled manner. We apply our persistent 3D scene representation to the problem of novel view synthesis demonstrating high-quality results for a variety of challenging scenes. 
    more » « less