skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Touch-GS: Visual-Tactile Supervised 3D Gaussian Splatting
In this work, we propose a novel method to supervise 3D Gaussian Splatting (3DGS) scenes using optical tactile sensors. Optical tactile sensors have become widespread in their use in robotics for manipulation and object representation; however, raw optical tactile sensor data is unsuitable to directly supervise a 3DGS scene. Our representation leverages a Gaussian Process Implicit Surface to implicitly represent the object, combining many touches into a unified representation with uncertainty. We merge this model with a monocular depth estimation network, which is aligned in a two stage process, coarsely aligning with a depth camera and then finely adjusting to match our touch data. For every training image, our method produces a corresponding fused depth and uncertainty map. Utilizing this additional information, we propose a new loss function, variance weighted depth supervised loss, for training the 3DGS scene model. We leverage the DenseTact optical tactile sensor and RealSense RGB-D camera to show that combining touch and vision in this manner leads to quantitatively and qualitatively better results than vision or touch alone in a few-view scene syntheses on opaque as well as on reflective and transparent objects. Please see our project page at armlabstanford.github.io/touch-gs  more » « less
Award ID(s):
2142773 2220867
PAR ID:
10613663
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-7770-5
Page Range / eLocation ID:
10511 to 10518
Format(s):
Medium: X
Location:
Abu Dhabi, United Arab Emirates
Sponsoring Org:
National Science Foundation
More Like this
  1. Knowledge of 3-D object shape is of great importance to robot manipulation tasks, but may not be readily available in unstructured environments. While vision is often occluded during robot-object interaction, high-resolution tactile sensors can give a dense local perspective of the object. However, tactile sensors have limited sensing area and the shape representation must faithfully approximate non-contact areas. In addition, a key challenge is efficiently incorporating these dense tactile measurements into a 3-D mapping framework. In this work, we propose an incremental shape mapping method using a GelSight tactile sensor and a depth camera. Local shape is recovered from tactile images via a learned model trained in simulation. Through efficient inference on a spatial factor graph informed by a Gaussian process, we build an implicit surface representation of the object. We demonstrate visuo-tactile mapping in both simulated and real-world experiments, to incrementally build 3-D reconstructions of household objects. 
    more » « less
  2. Robots are active agents that operate in dynamic scenarios with noisy sensors. Predictions based on these noisy sensor measurements often lead to errors and can be unreliable. To this end, roboticists have used fusion methods using multiple observations. Lately, neural networks have dominated the accuracy charts for perception-driven predictions for robotic decision-making and often lack uncertainty metrics associated with the predictions. Here, we present a mathematical formulation to obtain the heteroscedastic aleatoric uncertainty of any arbitrary distribution without prior knowledge about the data. The approach has no prior assumptions about the prediction labels and is agnostic to network architecture. Furthermore, our class of networks, Ajna, adds minimal computation and requires only a small change to the loss function while training neural networks to obtain uncertainty of predictions, enabling real-time operation even on resource-constrained robots. In addition, we study the informational cues present in the uncertainties of predicted values and their utility in the unification of common robotics problems. In particular, we present an approach to dodge dynamic obstacles, navigate through a cluttered scene, fly through unknown gaps, and segment an object pile, without computing depth but rather using the uncertainties of optical flow obtained from a monocular camera with onboard sensing and computation. We successfully evaluate and demonstrate the proposed Ajna network on four aforementioned common robotics and computer vision tasks and show comparable results to methods directly using depth. Our work demonstrates a generalized deep uncertainty method and demonstrates its utilization in robotics applications. 
    more » « less
  3. The most common sensing modalities found in a robot perception system are vision and touch, which together can provide global and highly localized data for manipulation. However, these sensing modalities often fail to adequately capture the behavior of target objects during the critical moments as they transition out of static, controlled contact with an end-effector to dynamic and uncontrolled motion. In this work, we present a novel multimodal visuotactile sensor that provides simultaneous visuotactile and proximity depth data. The sensor integrates an RGB camera and air pressure sensor to sense touch with an infrared time-of-flight (ToF) camera to sense proximity by leveraging a selectively transmissive soft membrane to enable the dual sensing modalities. We present the mechanical design, fabrication techniques, algorithm implementations, and evaluation of the sensor's tactile and proximity modalities. The sensor is demonstrated in three open-loop robotic tasks: approaching and contacting an object, catching, and throwing. The fusion of tactile and proximity data could be used to capture key information about a target object's transition behavior for sensor-based control in dynamic manipulation. 
    more » « less
  4. Reconstruction of 3D neural fields from posed images has emerged as a promising method for self-supervised representation learning. The key challenge preventing the deployment of these 3D scene learners on large-scale video data is their dependence on precise camera poses from structure-from-motion, which is prohibitively expensive to run at scale. We propose a method that jointly reconstructs camera poses and 3D neural scene representations online and in a single forward pass. We estimate poses by first lifting frame-to-frame optical flow to 3D scene flow via differentiable rendering, preserving locality and shift-equivariance of the image processing backbone. SE(3) camera pose estimation is then performed via a weighted least-squares fit to the scene flow field. This formulation enables us to jointly supervise pose estimation and a generalizable neural scene representation via re-rendering the input video, and thus, train end-to-end and fully self-supervised on real-world video datasets. We demonstrate that our method performs robustly on diverse, real-world video, notably on sequences traditionally challenging to optimization-based pose estimation techniques. 
    more » « less
  5. Reconstruction of 3D neural fields from posed images has emerged as a promising method for self-supervised representation learning. The key challenge preventing the deployment of these 3D scene learners on large-scale video data is their dependence on precise camera poses from structure-from-motion, which is prohibitively expensive to run at scale. We propose a method that jointly reconstructs camera poses and 3D neural scene representations online and in a single forward pass. We estimate poses by first lifting frame-to-frame optical flow to 3D scene flow via differentiable rendering, preserving locality and shift-equivariance of the image processing backbone. SE(3) camera pose estimation is then performed via a weighted least-squares fit to the scene flow field. This formulation enables us to jointly supervise pose estimation and a generalizable neural scene representation via re-rendering the input video, and thus, train end-to-end and fully self-supervised on real-world video datasets. We demonstrate that our method performs robustly on diverse, real-world video, notably on sequences traditionally challenging to optimization-based pose estimation techniques. 
    more » « less