Abstract Detection and identification of chiral molecules are important for pharmaceutical industry, clinical analysis, and food analysis. Here, chiral molecular sensing based on spatially selective coupling between achiral metasurface and chiral molecules is demonstrated. The designed achiral metasurface exhibits strong optical chirality and electric field with dissymmetric distribution, and chiral molecules are selectively placed over the area with large optical chirality to form the coupled metasurface-molecule system with circular dichroism (CD) response for chiral molecular sensing. The CD spectra of the metasurface coupled with pure D-alanine enantiomer, L-alanine enantiomer and their mixtures are examined. The linear relationship between the peak CD value and the enantiomeric excess is demonstrated for the detection and identification of pure enantiomers and their mixtures. Furthermore, the CD response of the coupled system shows potential for the sensing of molar concentration of chiral molecules. Moreover, the effect of spatial location of molecules on the CD response is analyzed to show potential for position sensing of chiral molecules. These results of chiral molecular sensing with achiral metasurface offer new opportunities for advancing biomolecular sensing applications.
more »
« less
X-ray circular dichroism signals: a unique probe of local molecular chirality
Core-resonant circular dichroism (CD) signals are induced by molecular chirality and vanish for achiral molecules and racemic mixtures. The highly localized nature of core excitations makes them ideal probes of local chirality within molecules. Simulations of the circular dichroism spectra of several molecular families illustrate how these signals vary with the electronic coupling to substitution groups, the distance between the X-ray chromophore and the chiral center, geometry, and chemical structure. Clear insight into the molecular structure is obtained through analysis of the X-ray CD spectra.
more »
« less
- Award ID(s):
- 1361516
- PAR ID:
- 10057292
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 8
- Issue:
- 9
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 5969 to 5978
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Circular dichroism (CD) spectroscopy, which measures the differential absorption of circularly polarized light with opposite handedness, is an important technique to detect and identify chiral molecules in chemistry, biology and life sciences. However, CD signals are normally very small due to the intrinsically weak chirality of molecules. Here we theoretically investigate the generation of chiral hotspots in silicon nanocube dimers for CD enhancement. Up to 15-fold enhancement of the global optical chirality is obtained in the dimer gap, which boosts the CD signal by one order of magnitude without reducing the dissymmetry factor. This chiral hotspot originates from the simultaneous enhancement of magnetic and electric fields and their proper spatial overlap. Our findings could lead to integrated devices for CD spectroscopy, enantioselective sensing, sorting and synthesis.more » « less
-
Abstract Evidence of chirality was observed at the Fe metal center in Fe(III) spin crossover coordination salts [Fe(qsal)2][Ni(dmit)2] and [Fe(qsal)2](TCNQ)2from x-ray absorption (XAS) spectroscopy at the Fe 2p3/2core threshold. Based on the circularly polarized XAS data, the x-ray natural circular dichroism for [Fe(qsal)2][Ni(dmit)2] and [Fe(qsal)2](TCNQ)2is far stronger than seen for [Fe(qsal)2]Cl suggesting this natural circular dichroism signature is a ligand effect rather than a result of just a loss of octahedral symmetry on the Fe core. The larger the chiral effects in the Fe 2p core to bound XAS, the greater the perturbation of the Fe 2p3/2to 2p1/2spin–orbit splitting seen in the XAS spectra.more » « less
-
Achiral metasurfaces with near-field optical chirality have attracted great attention in molecular sensing and chiral emission control. Here, the circular dichroism (CD) response of an achiral metasurface induced by spatially selective coupling with polymethyl methacrylate (PMMA) molecules is demonstrated. A designed achiral metasurface with a V-shaped resonator exhibits large optical chirality with a strongly dissymmetric distribution under circular polarization. By introducing a PMMA molecule layer on top of the metasurface, which covers the area with large optical chirality, CD in absorption of 0.38 and a dissymmetric factor of optical chiralitygcof 0.16 are obtained. Furthermore, an analysis of the coupled harmonic oscillator model reveals stronger coupling strength between the PMMA layer and the metasurface under RCP incidence, compared to the LCP case. Moreover, it is shown that the far-field CD response of the metasurface is linearly correlated with the dissymmetric near-field optical chirality distribution. The demonstrated results present the potential for advancing applications in chiral molecule vibrational sensing, thermal emission control, and infrared chiral imaging.more » « less
-
Ligand‐assisted perovskite nanoclusters (PNCs) have been synthesized using oleylamine and L‐ or D‐cysteine as confirmed based on their characteristic electronic absorption bands around 430 nm based on ultraviolet‐visible spectra. Circular dichroism (CD) spectra show distinct chiroptical bands in the 430–440 nm region, revealing the chirality of the PNCs. Interestingly, the sign of the CD signal is always negative, independent of the chirality for L‐ or D‐cystine. This 430–440 nm CD band is tentatively attributed to the formation of new chiral stereocenters within the PNCs with an uneven ratio of two enantiomers induced by the asymmetric liquid–liquid interface from the solvent and antisolvent used during synthesis.more » « less
An official website of the United States government

