Post-synthetic phase transfer ligand exchange has been established as a simple, reliable, and versatile method for the synthesis of chiral, optically active colloidal nanocrystals displaying circular dichroism (CD) and circularly polarized luminescence (CPL). Herein we present a water-free and purification-free cyclohexane → methanol ligand exchange system that led to the synthesis of stable, non-aggregating chiral and fluorescent cadmium sulfide quantum dots (CdS QDs). Absorption and emission studies revealed that the carboxylate capping ligands can tune the band gap by up to 65 meV as well as control the band gap and deep trap emission pathways. The CD data revealed that the addition of a 2nd stereogenic center did not automatically lead to an increase of the CD anisotropy of QDs, but rather match/mismatch cooperativity effects must be considered in the transfer of the chirality from the capping ligands to the achiral nanocrystals. Variation in position of the functional groups as well as the chemical identity of the functional groups impacted both the shape and anisotropy of the induced CD spectra and revealed the importance of the functional groups’ coordination and polarity on the binding geometry and induced chiroptical properties. Finally, we describe the first example where CD spectra of QDs capped with the same ligand and dissolved in the same solvent displayed very different spectral profiles. This work provides deeper insight into induced CD of QDs and paves the path to rational design of chiral nanomaterials.
more »
« less
Can we still measure circular dichroism with circular dichroism spectrometers: The dangers of anisotropic artifacts
Abstract Chiral materials with strong linear anisotropies are difficult to accurately characterize with circular dichroism (CD) because of artifactual contributions to their spectra from linear dichroism (LD) and birefringence (LB). Historically, researchers have used a second‐order Taylor series expansion on the Mueller matrix to model the LDLB interaction effects on the spectra in conventional materials, but this approach may no longer be sufficient to account for the artifactual CD signals in emergent materials. In this work, we present an expression to model the measured CD using a third‐order expansion, which introduces “pairwise interference” terms that, unlike the LDLB terms, cannot be averaged out of the signal. We find that the third‐order pairwise interference terms can make noticeable contributions to the simulated CD spectra. Using numerical simulations of the measured CD across a broad range of linear and chiral anisotropy parameters, the LDLB interactions are most prominent in samples that have strong linear anisotropies (LD, LB) but negligible chiral anisotropies, where the measured CD strays from the chirality‐induced CD by factors greater than 103. Additionally, the pairwise interactions are most significant in systems with moderate‐to‐strong chiral and linear anisotropies, where the measured CD is inflated twofold, a figure that grows as linear anisotropies approach their maximum. In summary, media with moderate‐to‐strong linear anisotropy are in great danger of having their CD altered by these effects in subtle manners. This work highlights the significance of considering distortions in CD measurements through higher‐order pairwise interference effects in highly anisotropic nanomaterials.
more »
« less
- PAR ID:
- 10441929
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chirality
- Volume:
- 35
- Issue:
- 11
- ISSN:
- 0899-0042
- Format(s):
- Medium: X Size: p. 846-855
- Size(s):
- p. 846-855
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Core-resonant circular dichroism (CD) signals are induced by molecular chirality and vanish for achiral molecules and racemic mixtures. The highly localized nature of core excitations makes them ideal probes of local chirality within molecules. Simulations of the circular dichroism spectra of several molecular families illustrate how these signals vary with the electronic coupling to substitution groups, the distance between the X-ray chromophore and the chiral center, geometry, and chemical structure. Clear insight into the molecular structure is obtained through analysis of the X-ray CD spectra.more » « less
-
Circular dichroism (CD) spectroscopy, which measures the differential absorption of circularly polarized light with opposite handedness, is an important technique to detect and identify chiral molecules in chemistry, biology and life sciences. However, CD signals are normally very small due to the intrinsically weak chirality of molecules. Here we theoretically investigate the generation of chiral hotspots in silicon nanocube dimers for CD enhancement. Up to 15-fold enhancement of the global optical chirality is obtained in the dimer gap, which boosts the CD signal by one order of magnitude without reducing the dissymmetry factor. This chiral hotspot originates from the simultaneous enhancement of magnetic and electric fields and their proper spatial overlap. Our findings could lead to integrated devices for CD spectroscopy, enantioselective sensing, sorting and synthesis.more » « less
-
Integrating phase-change materials in metasurfaces has emerged as a powerful strategy to realize optical devices with tunable electromagnetic responses. Here, phase-change chiral metasurfaces based on GST-225 material with the designed trapezoid-shaped resonators are demonstrated to achieve tunable circular dichroism (CD) responses in the infrared regime. The asymmetric trapezoid-shaped resonators are designed to support two chiral plasmonic resonances with opposite CD responses for realizing switchable CD between negative and positive values using the GST phase change from amorphous to crystalline. The electromagnetic field distributions of the chiral plasmonic resonant modes are analyzed to understand the chiroptical responses of the metasurface. Furthermore, the variations in the absorption spectrum and CD value for the metasurface as a function of the baking time during the GST phase transition are analyzed to reveal the underlying thermal tuning process of the metasurface. The demonstrated phase-change metasurfaces with tunable CD responses hold significant promise in enabling many applications in the infrared regime such as chiral sensing, encrypted communication, and thermal imaging.more » « less
-
Abstract Gyroid optical metamaterials consist of triply periodic chiral networks that are attractive photonic structures due to the combination of intriguing optical properties and spontaneous self‐assembly‐based fabrication routes using materials such as block copolymers. A previous experimental investigation found that gyroid metamaterials support strong circular dichroism, beyond what simulations only considering bulk interactions predict. In this work, simulations are used to unravel the contributions of bulk and surface interactions on the circular dichroism spectra of silver‐infilled gyroid metamaterial films. It is found that surface interactions have a significant, often dominating, contribution to circular dichroism. The relative strength of bulk and surface contributions can be tuned by controlling the crystallographic orientation, termination plane of the film, thickness, metal volume fraction, and defect density. Importantly, the dominance of surface interactions allows double gyroids, which are achiral in the bulk, to support strong circular dichroism responses withg‐factor magnitudes as large as 0.25.more » « less
An official website of the United States government
