skip to main content


Title: The shape effect on polymer nanoparticle transport in a blood vessel
Nanoparticle therapeutic delivery is influenced by many factors including physical, chemical, and biophysical properties along with local vascular conditions. In recent years, nanoparticles of various shapes have been fabricated and have shown significant impact on transport efficiency. Identification of which nanoparticle shape helps to improve the therapeutic delivery process allows for enhanced therapeutic effects, yet is hard to be quantified in vivo due to the complex nature of the in vivo environment. In this work, we turn to biological models as a guide for informing improved nanoparticle therapeutic delivery, and quantify the contribution of various factors on delivery efficiency. Here we show that with a mimetic blood vessel, improved therapeutic delivery is achieved using long filamentous rod nanoparticles under low pressure conditions. When considering medium pressure conditions, a combination of nanoparticle shapes presents improved therapeutic delivery over the treatment time-course starting with long filamentous rod nanoparticles, followed by short rod nanoparticles. Conditions of high pressure required a combination of short rod nanoparticles, followed by spherical nanoparticles to achieve enhanced therapeutic delivery. Overall, improvement of therapeutic delivery via nanoparticle carriers is likely to require a combination of nanoparticle shapes administered at different times over the treatment time-course, given patient specific conditions.  more » « less
Award ID(s):
1701136
NSF-PAR ID:
10057782
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
RSC Advances
Volume:
8
Issue:
15
ISSN:
2046-2069
Page Range / eLocation ID:
8089 to 8100
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neonatal hypoxic-ischemic encephalopathy is the leading cause of permanent brain injury in term newborns and currently has no cure. Catalase, an antioxidant enzyme, is a promising therapeutic due to its ability to scavenge toxic reactive oxygen species and improve tissue oxygen status. However, upon in vivo administration, catalase is subject to a short half-life, rapid proteolytic degradation, immunogenicity, and an inability to penetrate the brain. Polymeric nanoparticles can improve pharmacokinetic properties of therapeutic cargo, although encapsulation of large proteins has been challenging. In this paper, we investigated hydrophobic ion pairing as a technique for increasing the hydrophobicity of catalase and driving its subsequent loading into a poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticle. We found improved formation of catalase-hydrophobic ion complexes with dextran sulfate (DS) compared to sodium dodecyl sulfate (SDS) or taurocholic acid (TA). Molecular dynamics simulations in a model system demonstrated retention of native protein structure after complexation with DS, but not SDS or TA. Using DS-catalase complexes, we developed catalase-loaded PLGA-PEG nanoparticles and evaluated their efficacy in the Vannucci model of unilateral hypoxic-ischemic brain injury in postnatal day 10 rats. Catalase-loaded nanoparticles retained enzymatic activity for at least 24 h in serum-like conditions, distributed through injured brain tissue, and delivered a significant neuroprotective effect compared to saline and blank nanoparticle controls. These results encourage further investigation of catalase and PLGA-PEG nanoparticle-mediated drug delivery for the treatment of neonatal brain injury. View Full-Text 
    more » « less
  2. Abstract

    Cancer is a dynamic disease characterized by its heterogeneous nature. This heterogeneity results in critical problems that interfere with the eradication of cancer tumors such as multidrug resistance, drug efflux capacity, narrow therapeutic window, and undesired side effects. Nanomedicine has introduced new platforms for drug delivery to enhance therapeutic efficiency of anticancer drugs. In addition to drug delivery, nanocarriers such as liposomes, carbon nanotubes, quantum dots, polymeric nanoparticles, dendrimers, and metallic nanoparticles can be designed for detection, diagnosis, and treatment. Recent studies support the idea that a combination of two or more nanoparticle‐mediated therapies can result in a synergistic therapeutic outcome to improve current cancer treatments. In this progress report, recent advances in nanoparticles‐based combination therapies are discussed. A brief overview of the complexity of cancer tumor's microenvironment is presented, followed by discussion of combinatorial therapies categorized based on chemotherapeutic agents, nucleic acid or therapeutic proteins, energy‐based therapies and imaging techniques for theranostic application. Different nanotechnological platforms are developed for combination therapy as tools with a great potential to tackle the most critical issues of current cancer treatments. A deeper understanding of these nanotechnologies and their possible long‐term effects in biological systems is needed for further clinical translation.

     
    more » « less
  3. Transitional cell carcinoma of the bladder is particularly devastating due to its high rate of recurrence and difficulty in retention of treatments within the bladder. Current cystoscopic approaches to detect and stage the tumor are limited by the penetrative depth of the cystoscope light source, and intravesical dyes that highlight tumors for surgical resection are non-specific. To address the needs for improved specificity in tumor detection and follow-up, we report on a novel technology relying on the engineered core of mesoporous silica (MSN) with surface modifications that generate contrast in fluorescence and magnetic resonance imaging (MRI). The particle surface was further functionalized to include a bladder cancer cell specific peptide, Cyc6, identified via phage display. This peptide possesses nanomolar specificity for bladder cancer cells and homology across multiple species including mouse, canine, and human. Our study takes advantage of its target expression in bladder tumor which is not expressed in normal bladder wall. When functionalized to MSN, the Cyc6 improved binding efficiency and specificity for bladder cancer cells in vitro. In an in vivo model, MSN instilled into bladders of tumor-bearing mice enhanced T 1- and T 2-weighted MRI signals, improving the detection of the tumor boundaries. These findings support the notion that our targeted nanomaterial presents new options for early detection and eventual therapeutic intervention. Ultimately, the combination of real-time and repeated MRI evaluation of the tumors enhanced by nanoparticle contrast have the potential for translation into human clinical studies for tumor staging, therapeutic monitoring, and drug delivery. 
    more » « less
  4. Abstract

    Recent advances in CRISPR present attractive genome‐editing toolsets for therapeutic strategies at the genetic level. Here, a liposome‐coated mesoporous silica nanoparticle (lipoMSN) is reported as an effective CRISPR delivery system for multiplex gene‐editing in the liver. The MSN provides efficient loading of Cas9 plasmid as well as Cas9 protein/guide RNA ribonucleoprotein complex (RNP), while liposome‐coating offers improved serum stability and enhanced cell uptake. Hypothesizing that loss‐of‐function mutation in the lipid‐metabolism‐related genespcsk9,apoc3, andangptl3would improve cardiovascular health by lowering blood cholesterol and triglycerides, the lipoMSN is used to deliver a combination of RNPs targeting these genes. When targeting a single gene, the lipoMSN achieved a 54% gene‐editing efficiency, besting the state‐of‐art Lipofectamine CRISPRMax. For multiplexing, lipoMSN maintained significant gene‐editing at each gene target despite reduced dosage of target‐specific RNP. By delivering combinations of targeting RNPs in the same nanoparticle, synergistic effects on lipid metabolism are observed in vitro and vivo. These effects, such as a 50% decrease in serum cholesterol after 4 weeks of post‐treatment with lipoMSN carrying bothpcsk9andangptl3‐targeted RNPs, could not be reached with a single gene‐editing approach. Taken together, this lipoMSN represents a versatile platform for the development of efficient, combinatorial gene‐editing therapeutics.

     
    more » « less
  5. Pulizzi, Fabio (Ed.)
    Rapidly growing interest in the nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influence transport in plants and the delivery efficiency of their cargoes, limiting the development of nanotechnology in plant systems. In this study we employed non-biolistically delivered DNA-modified gold nanoparticles (AuNPs) of various sizes (5–20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana leaves. Generally, smaller AuNPs demonstrated more rapid, higher and longer-lasting levels of association with plant cell walls compared with larger AuNPs. We observed internalization of rod-shaped but not spherical AuNPs into plant cells, yet, surprisingly, 10 nm spherical AuNPs functionalized with small-interfering RNA (siRNA) were the most efficient at siRNA delivery and inducing gene silencing in mature plant leaves. These results indicate the importance of nanoparticle size in efficient biomolecule delivery and, counterintuitively, demonstrate that efficient cargo delivery is possible and potentially optimal in the absence of nanoparticle cellular internalization. Overall, our results highlight nanoparticle features of importance for transport within plant tissues, providing a mechanistic overview of how nanoparticles can be designed to achieve efficacious biocargo delivery for future developments in plant nanobiotechnology. 
    more » « less