skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Correspondence between the latitudinal ULF wave power distribution and auroral oval in conjugate ionospheres
We examine the Pc5 wave power latitudinal distribution in the morning sector along the conjugate magnetometer arrays in Greenland and Antarctica. These distributions are compared with the location of the auroral oval, reconstructed using the OVATION-prime model. This model makes it possible to reconstruct separately the spatial structures of diffuse and monoenergetic precipitation of auroral electrons. Mapping of the spectral power of narrowband Pc5 waves onto the auroral oval has shown that the wave power in the morning sector is localized inside the auroral oval, namely at the poleward edge of diffuse precipitation, but near the peak of monoenergetic precipitation. The case analysis results have been confirmed by a larger statistical study. This observational result confirms the effects earlier found in case studies: the spatial/temporal variations of Pc5 wave power are closely related to the location of the auroral electrojet and magnetospheric field-aligned currents. From the observed relationship between the wave power and the auroral boundaries, it may be concluded that the poleward edge of the diffuse precipitation, around the maximum of the monoenergetic precipitation, is preferred latitude of magnetospheric field-line resonance excitation. This effect is not taken into account by modern theories of ULF Pc5 waves.  more » « less
Award ID(s):
1651263
PAR ID:
10057802
Author(s) / Creator(s):
Date Published:
Journal Name:
Sun and geosphere
Volume:
13
Issue:
1
ISSN:
1819-0839
Page Range / eLocation ID:
41-47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract South Pole Station, Antarctica (SPA, magnetic latitude = −74.5°, magnetic local time (MLT) = UT–3.5 h), is a unique observatory which can capture daytime auroral forms throughout austral winter season. We have studied the properties and origin of ultralow‐frequency (ULF) range modulation of daytime diffuse aurora, using data acquired on June 23, 2017 by multi‐instrument measurements at SPA and in situ measurements in the dayside outer magnetosphere. At 1500–1600 UT, monochromatic Pc5‐range pulsations (period ∼10 min) emerged in the midday diffuse auroral region. The sequential 2‐D images reveal that the auroral pulsations result from the repetitive formation of faint, diffuse auroral patches, propagating poleward at a speed of ∼1.5 km s−1. Interestingly, no obviously similar magnetic pulsations were found at SPA. The results differ fundamentally from the ground optical and magnetic signatures expected for a standing field line resonance. On the other hand, the co‐located riometer and VLF receiver observed clearly synchronized pulsations, suggesting that tens‐of‐keV electrons interact with modulated chorus waves and then are scattered down to the auroral pulsation region. During the same interval, the THEMIS‐D spacecraft detected corresponding Pc5 oscillations in the dayside outer magnetosphere (9–10REand ∼15 MLT). The compressional component of the magnetospheric Pc5 waves, presumably driven by an external source, exhibited a good correspondence to the daytime Pc5 auroral pulsations. The simultaneous SPA–THEMIS observations highlight the role of compressional Pc5 pulsations in the dayside outer magnetosphere in determining the periodicity of daytime high‐latitude diffuse auroral pulsations. 
    more » « less
  2. Abstract Recent studies of Pc5‐band (150–600 s) ultralow frequency waves found that foreshock disturbances can be a driver of dayside compressional waves and field line resonance, which are two typical Pc5 wave modes in the dayside magnetosphere. However, it is difficult to find spatial structure of dayside Pc5 waves using a small number of satellites or ground magnetometers. This study determines 2‐D structure of dayside Pc5 waves and their driver by utilizing coordinated observations by the THEMIS satellites and the all‐sky imager at South Pole during two series of Pc5 waves on 29 June 2008. These Pc5 waves were found to be field line resonances (FLRs) and driven by foreshock disturbances. The ground‐based all‐sky imager at South Pole shows that periodic poleward moving arcs occurred simultaneously with the FLRs near the satellite footprints over ~3°latitude and had the same frequencies as FLRs. This indicates that they are the auroral signature of the FLRs. The azimuthal distribution of the FLRs in the magnetosphere and their north‐south width in the ionosphere were further determined in the 2‐D images. In the first case, the FLRs distribute symmetrically in the prenoon and postnoon regions with out‐of‐phase oscillation as the odd toroidal mode in the equatorial plane. In the second case, the azimuthal wavelengths of the 350–500 s and 300–450 s period waves were ~8.0 and ~5.2 Re in the equatorial plane. It also shows a fine azimuthal structure embedded in the large‐scale arcs, indicating that a high azimuthal wave number (m~ 140) mode wave coupled with the low‐wave number FLRs. 
    more » « less
  3. Abstract Ultra low frequency (ULF; 1 mHz ‐ several Hz) waves are key to energy transport within the geospace system, yet their contribution to Joule heating in the upper atmosphere remains poorly quantified. This study statistically examines Joule heating associated with ionospheric ULF perturbations using Super Dual Auroral Radar Network (SuperDARN) data spanning middle to polar latitudes. Our analysis utilizes high‐time‐resolution measurements from SuperDARN high‐frequency coherent scatter radars operating in a special mode, sampling three “camping beams” approximately every 18 s. We focus on ULF perturbations within the Pc5 frequency range (1.6–6.7 mHz), estimating Joule heating rates from ionospheric electric fields derived from SuperDARN data and height‐integrated Pedersen conductance from empirical models. The analysis includes statistical characterization of Pc5 wave occurrence, electric fields, Joule heating rates, and azimuthal wave numbers. Our results reveal enhanced electric fields and Joule heating rates in the morning and pre‐midnight sectors, even though Pc5 wave occurrences peak in the afternoon. Joule heating is more pronounced in the high‐latitude morning sector during northward interplanetary magnetic field conditions, attributed to local time asymmetry in Pedersen conductance and Pc5 waves driven by Kelvin‐Helmholtz instability. Pc5 waves observed by multiple camping beams predominantly propagate westward at low azimuthal wave numbers , while high‐m waves propagate mainly eastward. Although Joule heating estimates may be underestimated due to assumptions about empirical conductance models and the underestimation of electric fields resulting from SuperDARN line‐of‐sight velocity measurements, these findings offer valuable insights into ULF wave‐related energy dissipation in the geospace system. 
    more » « less
  4. Abstract The role of diffuse electron precipitation in the formation of subauroral polarization streams (SAPS) is investigated with the Multiscale Atmosphere‐Geospace Environment (MAGE) model. Diffuse precipitation is derived from the distribution of drifting electrons. SAPS manifest themselves as a separate mesoscale flow channel in the duskside ionosphere, which gradually merges with the primary auroral convection toward dayside as the equatorward auroral boundary approaches the poleward Region‐2 field‐aligned currents (FACs) boundary. SAPS expand to lower latitudes and toward the nightside during the main phase of a geomagnetic storm, associated with magnetotail earthward plasma flows building up the ring current and intensifying Region‐2 FACs and electron precipitation. SAPS shrink poleward and sunward as the interplanetary magnetic field turns northward. When diffuse precipitation is turned off in a controlled MAGE simulation, ring current and duskside Region‐2 FACs become weaker, but subauroral zonal ion drifts are still comparable to auroral convection. However, subauroral and auroral convection manifest as a single broad flow channel without showing any mesoscale structure. SAPS overlap with the downward Region‐2 FACs equatorward of diffuse precipitation, where poleward electric fields are strong due to a low conductance in the subauroral ionosphere. The Region‐2 FACs extend to latitudes lower than the diffuse precipitation because the ring current protons penetrate closer to the Earth than the electrons do. This study reproduces the key physics of SAPS formation and their evolution in the coupled magnetosphere‐ionosphere during a geomagnetic storm. Diffuse electron precipitation is demonstrated to play a critical role in determining SAPS location and structure. 
    more » « less
  5. Abstract The accurate determination of auroral precipitation in global models has remained a daunting and rather inexplicable obstacle. Understanding the calculation and balance of multiple sources that constitute the aurora, and their eventual conversion into ionospheric electrical conductance, is critical for improved prediction of space weather events. In this study, we present a semi‐physical global modeling approach that characterizes contributions by four types of precipitation—monoenergetic, broadband, electron, and ion diffuse—to ionospheric electrodynamics. The model uses a combination of adiabatic kinetic theory and loss parameters derived from historical energy flux patterns to estimate auroral precipitation from magnetohydrodynamic (MHD) quantities. It then converts them into ionospheric conductance that is used to compute the ionospheric feedback to the magnetosphere. The model has been employed to simulate the 5–7 April 2010Galaxy15space weather event. Comparison of auroral fluxes show good agreement with observational data sets like NOAA‐DMSP and OVATION Prime. The study shows a dominant contribution by electron diffuse precipitation, accounting for ∼74% of the auroral energy flux. However, contributions by monoenergetic and broadband sources dominate during times of active upstream solar conditions, providing for up to 61% of the total hemispheric power. The study also finds a greater role played by broadband precipitation in ionospheric electrodynamics which accounts for ∼31% of the Pedersen conductance. 
    more » « less