skip to main content


Title: Opting Into Optimal Matchings
We revisit the problem of designing optimal, individually rational matching mechanisms (in a general sense, allowing for cycles in directed graphs), where each player — who is associated with a subset of vertices — matches as many of his own vertices when he opts into the matching mechanism as when he opts out. We offer a new perspective on this problem by considering an arbitrary graph, but assuming that vertices are associated with players at random. Our main result asserts that, under certain conditions, any fixed optimal matching is likely to be individually rational up to lower-order terms. We also show that a simple and practical mechanism is (fully) individually rational, and likely to be optimal up to lower-order terms. We discuss the implications of our results for market design in general, and kidney exchange in particular.  more » « less
Award ID(s):
1331175 1525971
NSF-PAR ID:
10057815
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
SIAM: ACM-SIAM Symposium on Discrete Algorithms (SODA17)
Page Range / eLocation ID:
2351 to 2363
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of estimating the value of sums of the form Sp≜∑(xip) when one has the ability to sample xi≥0 with probability proportional to its magnitude. When p=2, this problem is equivalent to estimating the selectivity of a self-join query in database systems when one can sample rows randomly. We also study the special case when {xi} is the degree sequence of a graph, which corresponds to counting the number of p-stars in a graph when one has the ability to sample edges randomly. Our algorithm for a (1±ε)-multiplicative approximation of Sp has query and time complexities O(mloglognϵ2S1/pp). Here, m=∑xi/2 is the number of edges in the graph, or equivalently, half the number of records in the database table. Similarly, n is the number of vertices in the graph and the number of unique values in the database table. We also provide tight lower bounds (up to polylogarithmic factors) in almost all cases, even when {xi} is a degree sequence and one is allowed to use the structure of the graph to try to get a better estimate. We are not aware of any prior lower bounds on the problem of join selectivity estimation. For the graph problem, prior work which assumed the ability to sample only vertices uniformly gave algorithms with matching lower bounds (Gonen et al. in SIAM J Comput 25:1365–1411, 2011). With the ability to sample edges randomly, we show that one can achieve faster algorithms for approximating the number of star subgraphs, bypassing the lower bounds in this prior work. For example, in the regime where Sp≤n, and p=2, our upper bound is O~(n/S1/2p), in contrast to their Ω(n/S1/3p) lower bound when no random edge queries are available. In addition, we consider the problem of counting the number of directed paths of length two when the graph is directed. This problem is equivalent to estimating the selectivity of a join query between two distinct tables. We prove that the general version of this problem cannot be solved in sublinear time. However, when the ratio between in-degree and out-degree is bounded—or equivalently, when the ratio between the number of occurrences of values in the two columns being joined is bounded—we give a sublinear time algorithm via a reduction to the undirected case. 
    more » « less
  2. We consider the maximum vertex-weighted matching problem (MVM), in which non-negative weights are assigned to the vertices of a graph, and the weight of a matching is the sum of the weights of the matched vertices. Although exact algorithms for MVM are faster than exact algorithms for the maximum edge-weighted matching problem, there are graphs on which these exact algorithms could take hundreds of hours. For a natural number k, we design a k/(k + 1)approximation algorithm for MVM on non-bipartite graphs that updates the matching along certain short paths in the graph: either augmenting paths of length at most 2k + 1 or weight-increasing paths of length at most 2k. The choice of k = 2 leads to a 2/3-approximation algorithm that computes nearly optimal weights fast. This algorithm could be initialized with a 2/3-approximate maximum cardinality matching to reduce its runtime in practice. A 1/2-approximation algorithm may be obtained using k = 1, which is faster than the 2/3-approximation algorithm but it computes lower weights. The 2/3-approximation algorithm has time complexity O(Δ2m) while the time complexity of the 1/2-approximation algorithm is O(Δm), where m is the number of edges and Δ is the maximum degree of a vertex. Results from our serial implementations show that on average the 1/2-approximation algorithm runs faster than the Suitor algorithm (currently the fastest 1/2-approximation algorithm) while the 2/3-approximation algorithm runs as fast as the Suitor algorithm but obtains higher weights for the matching. One advantage of the proposed algorithms is that they are well-suited for parallel implementation since they can process vertices to match in any order. The 1/2- and 2/3-approximation algorithms have been implemented on a shared memory parallel computer, and both approximation algorithms obtain good speedups, while the former algorithm runs faster on average than the parallel Suitor algorithm. Care is needed to design the parallel algorithm to avoid cyclic waits, and we prove that it is live-lock free. 
    more » « less
  3. Given a graph and an integer k, Densest k-Subgraph is the algorithmic task of finding the subgraph on k vertices with the maximum number of edges. This is a fundamental problem that has been subject to intense study for decades, with applications spanning a wide variety of fields. The state-of-the-art algorithm is an O(n^{1/4+ϵ})-factor approximation (for any ϵ>0) due to Bhaskara et al. [STOC '10]. Moreover, the so-called log-density framework predicts that this is optimal, i.e. it is impossible for an efficient algorithm to achieve an O(n^{1/4−ϵ})-factor approximation. In the average case, Densest k-Subgraph is a prototypical noisy inference task which is conjectured to exhibit a statistical-computational gap. In this work, we provide the strongest evidence yet of hardness for Densest k-Subgraph by showing matching lower bounds against the powerful Sum-of-Squares (SoS) algorithm, a meta-algorithm based on convex programming that achieves state-of-art algorithmic guarantees for many optimization and inference problems. For k ≤ n^1/2, we obtain a degree n^δ SoS lower bound for the hard regime as predicted by the log-density framework. To show this, we utilize the modern framework for proving SoS lower bounds on average-case problems pioneered by Barak et al. [FOCS '16]. A key issue is that small denser-than-average subgraphs in the input will greatly affect the value of the candidate pseudo-expectation operator around the subgraph. To handle this challenge, we devise a novel matrix factorization scheme based on the positive minimum vertex separator. We then prove an intersection tradeoff lemma to show that the error terms when using this separator are indeed small. 
    more » « less
  4. In bipartite matching problems, vertices on one side of a bipartite graph are paired with those on the other. In its online variant, one side of the graph is available offline, while the vertices on the other side arrive online. When a vertex arrives, an irrevocable and immediate decision should be made by the algorithm; either match it to an available vertex or drop it. Examples of such problems include matching workers to firms, advertisers to keywords, organs to patients, and so on. Much of the literature focuses on maximizing the total relevance—modeled via total weight—of the matching. However, in many real-world problems, it is also important to consider contributions of diversity: hiring a diverse pool of candidates, displaying a relevant but diverse set of ads, and so on. In this paper, we propose the Online Submodular Bipartite Matching (OSBM) problem, where the goal is to maximize a submodular function f over the set of matched edges. This objective is general enough to capture the notion of both diversity (e.g., a weighted coverage function) and relevance (e.g., the traditional linear function)—as well as many other natural objective functions occurring in practice (e.g., limited total budget in advertising settings). We propose novel algorithms that have provable guarantees and are essentially optimal when restricted to various special cases. We also run experiments on real-world and synthetic datasets to validate our algorithms. 
    more » « less
  5. We study the revenue guarantees and approximability of item pricing. Recent work shows that with n heterogeneous items, item-pricing guarantees an O(logn) approximation to the optimal revenue achievable by any (buy-many) mechanism, even when buyers have arbitrarily combinatorial valuations. However, finding good item prices is challenging – it is known that even under unit-demand valuations, it is NP-hard to find item prices that approximate the revenue of the optimal item pricing better than O(√n). Our work provides a more fine-grained analysis of the revenue guarantees and computational complexity in terms of the number of item “categories” which may be significantly fewer than n. We assume the items are partitioned in k categories so that items within a category are totally-ordered and a buyer’s value for a bundle depends only on the best item contained from every category. We show that item-pricing guarantees an O(logk) approximation to the optimal (buy-many) revenue and provide a PTAS for computing the optimal item-pricing when k is constant. We also provide a matching lower bound showing that the problem is (strongly) NP-hard even when k=1. Our results naturally extend to the case where items are only partially ordered, in which case the revenue guarantees and computational complexity depend on the width of the partial ordering, i.e. the largest set for which no two items are comparable. 
    more » « less