This content will become publicly available on June 2, 2024
 Award ID(s):
 2008920
 NSFPAR ID:
 10483143
 Publisher / Repository:
 ACM
 Date Published:
 Journal Name:
 STOC 2023: Proceedings of the 55th Annual ACM Symposium on Theory of Computing
 Page Range / eLocation ID:
 84 to 95
 Format(s):
 Medium: X
 Location:
 Orlando FL USA
 Sponsoring Org:
 National Science Foundation
More Like this

Computing a dense subgraph is a fundamental problem in graph mining, with a diverse set of applications ranging from electronic commerce to community detection in social networks. In many of these applications, the underlying context is better modelled as a weighted hypergraph that keeps evolving with time. This motivates the problem of maintaining the densest subhypergraph of a weighted hypergraph in a dynamic setting, where the input keeps changing via a sequence of updates (hyperedge insertions/deletions). Previously, the only known algorithm for this problem was due to Hu et al. [19]. This algorithm worked only on unweighted hypergraphs, and had an approximation ratio of (1 +ϵ)r2 and an update time of O(poly(r, log n)), where r denotes the maximum rank of the input across all the updates. We obtain a new algorithm for this problem, which works even when the input hypergraph is weighted. Our algorithm has a significantly improved (nearoptimal) approximation ratio of (1 +ϵ) that is independent of r, and a similar update time of O(poly(r, log n)). It is the first (1 +ϵ)approximation algorithm even for the special case of weighted simple graphs. To complement our theoretical analysis, we perform experiments with our dynamic algorithm on largescale, realworld datasets. Our algorithm significantly outperforms the state of the art [19] both in terms of accuracy and efficiency.more » « less

Abstract We consider the problem of covering multiple submodular constraints. Given a finite ground set
N , a weight function ,$$w: N \rightarrow \mathbb {R}_+$$ $w:N\to {R}_{+}$r monotone submodular functions over$$f_1,f_2,\ldots ,f_r$$ ${f}_{1},{f}_{2},\dots ,{f}_{r}$N and requirements the goal is to find a minimum weight subset$$k_1,k_2,\ldots ,k_r$$ ${k}_{1},{k}_{2},\dots ,{k}_{r}$ such that$$S \subseteq N$$ $S\subseteq N$ for$$f_i(S) \ge k_i$$ ${f}_{i}\left(S\right)\ge {k}_{i}$ . We refer to this problem as$$1 \le i \le r$$ $1\le i\le r$MultiSubmodCover and it was recently considered by HarPeled and Jones (Few cuts meet many point sets. CoRR.arxiv:abs1808.03260 HarPeled and Jones 2018) who were motivated by an application in geometry. Even with$$r=1$$ $r=1$MultiSubmodCover generalizes the wellknown Submodular Set Cover problem (SubmodSC ), and it can also be easily reduced toSubmodSC . A simple greedy algorithm gives an approximation where$$O(\log (kr))$$ $O(log(kr\left)\right)$ and this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm for$$k = \sum _i k_i$$ $k={\sum}_{i}{k}_{i}$MultiSubmodCover that covers each constraint to within a factor of while incurring an approximation of$$(11/e\varepsilon )$$ $(11/e\epsilon )$ in the cost. Second, we consider the special case when each$$O(\frac{1}{\epsilon }\log r)$$ $O(\frac{1}{\u03f5}logr)$ is a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover ($$f_i$$ ${f}_{i}$PartialSC ), covering integer programs (CIPs ) and multiple vertex cover constraints Bera et al. (Theoret Comput Sci 555:2–8 Bera et al. 2014). Both these algorithms are based on mathematical programming relaxations that avoid the limitations of the greedy algorithm. We demonstrate the implications of our algorithms and related ideas to several applications ranging from geometric covering problems to clustering with outliers. Our work highlights the utility of the highlevel model and the lens of submodularity in addressing this class of covering problems. 
We prove several hardness results for training depth2 neural networks with the ReLU activation function; these networks are simply weighted sums (that may include negative coefficients) of ReLUs. Our goal is to output a depth2 neural network that minimizes the square loss with respect to a given training set. We prove that this problem is NPhard already for a network with a single ReLU. We also prove NPhardness for outputting a weighted sum of k ReLUs minimizing the squared error (for k>1) even in the realizable setting (i.e., when the labels are consistent with an unknown depth2 ReLU network). We are also able to obtain lower bounds on the running time in terms of the desired additive error ϵ. To obtain our lower bounds, we use the Gap Exponential Time Hypothesis (GapETH) as well as a new hypothesis regarding the hardness of approximating the well known Densest kSubgraph problem in subexponential time (these hypotheses are used separately in proving different lower bounds). For example, we prove that under reasonable hardness assumptions, any proper learning algorithm for finding the best fitting ReLU must run in time exponential in (1/epsilon)^2. Together with a previous work regarding improperly learning a ReLU (Goel et al., COLT'17), this implies the first separation between proper and improper algorithms for learning a ReLU. We also study the problem of properly learning a depth2 network of ReLUs with bounded weights giving new (worstcase) upper bounds on the running time needed to learn such networks both in the realizable and agnostic settings. Our upper bounds on the running time essentially matches our lower bounds in terms of the dependency on epsilon.more » « less

Braverman, Mark (Ed.)We present a framework for speeding up the time it takes to sample from discrete distributions $\mu$ defined over subsets of size $k$ of a ground set of $n$ elements, in the regime where $k$ is much smaller than $n$. We show that if one has access to estimates of marginals $\mathbb{P}_{S\sim \mu}[i\in S]$, then the task of sampling from $\mu$ can be reduced to sampling from related distributions $\nu$ supported on size $k$ subsets of a ground set of only $n^{1\alpha}\cdot \operatorname{poly}(k)$ elements. Here, $1/\alpha\in [1, k]$ is the parameter of entropic independence for $\mu$. Further, our algorithm only requires sparsified distributions $\nu$ that are obtained by applying a sparse (mostly $0$) external field to $\mu$, an operation that for many distributions $\mu$ of interest, retains algorithmic tractability of sampling from $\nu$. This phenomenon, which we dub domain sparsification, allows us to pay a onetime cost of estimating the marginals of $\mu$, and in return reduce the amortized cost needed to produce many samples from the distribution $\mu$, as is often needed in upstream tasks such as counting and inference. For a wide range of distributions where $\alpha=\Omega(1)$, our result reduces the domain size, and as a corollary, the costpersample, by a $\operatorname{poly}(n)$ factor. Examples include monomers in a monomerdimer system, nonsymmetric determinantal point processes, and partitionconstrained Strongly Rayleigh measures. Our work significantly extends the reach of prior work of Anari and Derezi\'nski who obtained domain sparsification for distributions with a logconcave generating polynomial (corresponding to $\alpha=1$). As a corollary of our new analysis techniques, we also obtain a less stringent requirement on the accuracy of marginal estimates even for the case of logconcave polynomials; roughly speaking, we show that constantfactor approximation is enough for domain sparsification, improving over $O(1/k)$ relative error established in prior work.more » « less

Chakrabarti, Amit ; Swamy, Chaitanya (Ed.)A Boolean maximum constraint satisfaction problem, MaxCSP(f), is specified by a predicate f:{1,1}^k → {0,1}. An nvariable instance of MaxCSP(f) consists of a list of constraints, each of which applies f to k distinct literals drawn from the n variables. For k = 2, Chou, Golovnev, and Velusamy [Chou et al., 2020] obtained explicit ratios characterizing the √ nspace streaming approximability of every predicate. For k ≥ 3, Chou, Golovnev, Sudan, and Velusamy [Chou et al., 2022] proved a general dichotomy theorem for √ nspace sketching algorithms: For every f, there exists α(f) ∈ (0,1] such that for every ε > 0, MaxCSP(f) is (α(f)ε)approximable by an O(log n)space linear sketching algorithm, but (α(f)+ε)approximation sketching algorithms require Ω(√n) space. In this work, we give closedform expressions for the sketching approximation ratios of multiple families of symmetric Boolean functions. Letting α'_k = 2^{(k1)} (1k^{2})^{(k1)/2}, we show that for odd k ≥ 3, α(kAND) = α'_k, and for even k ≥ 2, α(kAND) = 2α'_{k+1}. Thus, for every k, kAND can be (2o(1))2^{k}approximated by O(log n)space sketching algorithms; we contrast this with a lower bound of Chou, Golovnev, Sudan, Velingker, and Velusamy [Chou et al., 2022] implying that streaming (2+ε)2^{k}approximations require Ω(n) space! We also resolve the ratio for the "atleast(k1)1’s" function for all even k; the "exactly(k+1)/21’s" function for odd k ∈ {3,…,51}; and fifteen other functions. We stress here that for general f, the dichotomy theorem in [Chou et al., 2022] only implies that α(f) can be computed to arbitrary precision in PSPACE, and thus closedform expressions need not have existed a priori. Our analyses involve identifying and exploiting structural "saddlepoint" properties of this dichotomy. Separately, for all threshold functions, we give optimal "biasbased" approximation algorithms generalizing [Chou et al., 2020] while simplifying [Chou et al., 2022]. Finally, we investigate the √ nspace streaming lower bounds in [Chou et al., 2022], and show that they are incomplete for 3AND, i.e., they fail to rule out (α(3AND})ε)approximations in o(√ n) space.more » « less