skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sum-of-Squares Lower Bounds for Densest k-Subgraph
Given a graph and an integer k, Densest k-Subgraph is the algorithmic task of finding the subgraph on k vertices with the maximum number of edges. This is a fundamental problem that has been subject to intense study for decades, with applications spanning a wide variety of fields. The state-of-the-art algorithm is an O(n^{1/4+ϵ})-factor approximation (for any ϵ>0) due to Bhaskara et al. [STOC '10]. Moreover, the so-called log-density framework predicts that this is optimal, i.e. it is impossible for an efficient algorithm to achieve an O(n^{1/4−ϵ})-factor approximation. In the average case, Densest k-Subgraph is a prototypical noisy inference task which is conjectured to exhibit a statistical-computational gap. In this work, we provide the strongest evidence yet of hardness for Densest k-Subgraph by showing matching lower bounds against the powerful Sum-of-Squares (SoS) algorithm, a meta-algorithm based on convex programming that achieves state-of-art algorithmic guarantees for many optimization and inference problems. For k ≤ n^1/2, we obtain a degree n^δ SoS lower bound for the hard regime as predicted by the log-density framework. To show this, we utilize the modern framework for proving SoS lower bounds on average-case problems pioneered by Barak et al. [FOCS '16]. A key issue is that small denser-than-average subgraphs in the input will greatly affect the value of the candidate pseudo-expectation operator around the subgraph. To handle this challenge, we devise a novel matrix factorization scheme based on the positive minimum vertex separator. We then prove an intersection tradeoff lemma to show that the error terms when using this separator are indeed small.  more » « less
Award ID(s):
2008920
PAR ID:
10483143
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
STOC 2023: Proceedings of the 55th Annual ACM Symposium on Theory of Computing
ISBN:
9781450399135
Page Range / eLocation ID:
84 to 95
Format(s):
Medium: X
Location:
Orlando FL USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    Dense subgraph discovery is an important problem in graph mining and network analysis with several applications. Two canonical polynomial-time solvable problems here are to find a maxcore (subgraph of maximum min degree) and to find a densest subgraph (subgraph of maximum average degree). Both of these problems can be solved in polynomial time. Veldt, Benson, and Kleinberg [Veldt et al., 2021] introduced the generalized p-mean densest subgraph problem which captures the maxcore problem when p = -∞ and the densest subgraph problem when p = 1. They observed that for p ≥ 1, the objective function is supermodular and hence the problem can be solved in polynomial time. In this work, we focus on the p-mean densest subgraph problem for p ∈ (-∞, 1). We prove that for every p ∈ (-∞,1), the problem is NP-hard, thus resolving an open question from [Veldt et al., 2021]. We also show that for every p ∈ (0,1), the weighted version of the problem is APX-hard. On the algorithmic front, we describe two simple 1/2-approximation algorithms for every p ∈ (-∞, 1). We complement the approximation algorithms by exhibiting non-trivial instances on which the algorithms simultaneously achieve an approximation factor of at most 1/2. 
    more » « less
  2. Computing a dense subgraph is a fundamental problem in graph mining, with a diverse set of applications ranging from electronic commerce to community detection in social networks. In many of these applications, the underlying context is better modelled as a weighted hypergraph that keeps evolving with time. This motivates the problem of maintaining the densest subhypergraph of a weighted hypergraph in a dynamic setting, where the input keeps changing via a sequence of updates (hyperedge insertions/deletions). Previously, the only known algorithm for this problem was due to Hu et al. [19]. This algorithm worked only on unweighted hypergraphs, and had an approximation ratio of (1 +ϵ)r2 and an update time of O(poly(r, log n)), where r denotes the maximum rank of the input across all the updates. We obtain a new algorithm for this problem, which works even when the input hypergraph is weighted. Our algorithm has a significantly improved (near-optimal) approximation ratio of (1 +ϵ) that is independent of r, and a similar update time of O(poly(r, log n)). It is the first (1 +ϵ)-approximation algorithm even for the special case of weighted simple graphs. To complement our theoretical analysis, we perform experiments with our dynamic algorithm on large-scale, real-world data-sets. Our algorithm significantly outperforms the state of the art [19] both in terms of accuracy and efficiency. 
    more » « less
  3. Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)
    In the Directed Steiner Tree (DST) problem the input is a directed edge-weighted graph G = (V,E), a root vertex r and a set S ⊆ V of k terminals. The goal is to find a min-cost subgraph that connects r to each of the terminals. DST admits an O(log² k/log log k)-approximation in quasi-polynomial time [Grandoni et al., 2022; Rohan Ghuge and Viswanath Nagarajan, 2022], and an O(k^{ε})-approximation for any fixed ε > 0 in polynomial-time [Alexander Zelikovsky, 1997; Moses Charikar et al., 1999]. Resolving the existence of a polynomial-time poly-logarithmic approximation is a major open problem in approximation algorithms. In a recent work, Friggstad and Mousavi [Zachary Friggstad and Ramin Mousavi, 2023] obtained a simple and elegant polynomial-time O(log k)-approximation for DST in planar digraphs via Thorup’s shortest path separator theorem [Thorup, 2004]. We build on their work and obtain several new results on DST and related problems. - We develop a tree embedding technique for rooted problems in planar digraphs via an interpretation of the recursion in [Zachary Friggstad and Ramin Mousavi, 2023]. Using this we obtain polynomial-time poly-logarithmic approximations for Group Steiner Tree [Naveen Garg et al., 2000], Covering Steiner Tree [Goran Konjevod et al., 2002] and the Polymatroid Steiner Tree [Gruia Călinescu and Alexander Zelikovsky, 2005] problems in planar digraphs. All these problems are hard to approximate to within a factor of Ω(log² n/log log n) even in trees [Eran Halperin and Robert Krauthgamer, 2003; Grandoni et al., 2022]. - We prove that the natural cut-based LP relaxation for DST has an integrality gap of O(log² k) in planar digraphs. This is in contrast to general graphs where the integrality gap of this LP is known to be Ω(√k) [Leonid Zosin and Samir Khuller, 2002] and Ω(n^{δ}) for some fixed δ > 0 [Shi Li and Bundit Laekhanukit, 2022]. - We combine the preceding results with density based arguments to obtain poly-logarithmic approximations for the multi-rooted versions of the problems in planar digraphs. For DST our result improves the O(R + log k) approximation of [Zachary Friggstad and Ramin Mousavi, 2023] when R = ω(log² k). 
    more » « less
  4. We study the densest subgraph problem and give algorithms via multiplicative weights update and area convexity that converge in $$O\left(\frac{\log m}{\epsilon^{2}}\right)$$ and $$O\left(\frac{\log m}{\epsilon}\right)$$ iterations, respectively, both with nearly-linear time per iteration. Compared with the work by Bahmani et al. (2014), our MWU algorithm uses a very different and much simpler procedure for recovering the dense subgraph from the fractional solution and does not employ a binary search. Compared with the work by Boob et al. (2019), our algorithm via area convexity improves the iteration complexity by a factor $$\Delta$$ — the maximum degree in the graph, and matches the fastest theoretical runtime currently known via flows (Chekuri et al., 2022) in total time. Next, we study the dense subgraph decomposition problem and give the first practical iterative algorithm with linear convergence rate $$O\left(mn\log\frac{1}{\epsilon}\right)$$ via accelerated random coordinate descent. This significantly improves over $$O\left(\frac{m\sqrt{mn\Delta}}{\epsilon}\right)$$ time of the FISTA-based algorithm by Harb et al. (2022). In the high precision regime $$\epsilon\ll\frac{1}{n}$$ where we can even recover the exact solution, our algorithm has a total runtime of $$O\left(mn\log n\right)$$, matching the state of the art exact algorithm via parametric flows (Gallo et al., 1989). Empirically, we show that this algorithm is very practical and scales to very large graphs, and its performance is competitive with widely used methods that have significantly weaker theoretical guarantees. 
    more » « less
  5. The celebrated model of auctions with interdependent valuations, introduced by Milgrom and Weber in 1982, has been studied almost exclusively under private signals $$s_1, \ldots, s_n$$ of the $$n$$ bidders and public valuation functions $$v_i(s_1, \ldots, s_n)$$. Recent work in TCS has shown that this setting admits a constant approximation to the optimal social welfare if the valuations satisfy a natural property called submodularity over signals (SOS). More recently, Eden et al. (2022) have extended the analysis of interdependent valuations to include settings with private signals and \emph{private valuations}, and established $$O(\log^2 n)$$-approximation for SOS valuations. In this paper we show that this setting admits a {\em constant} factor approximation, settling the open question raised by Eden et al. (2022). 
    more » « less