skip to main content

This content will become publicly available on June 2, 2024

Title: Sum-of-Squares Lower Bounds for Densest k-Subgraph
Given a graph and an integer k, Densest k-Subgraph is the algorithmic task of finding the subgraph on k vertices with the maximum number of edges. This is a fundamental problem that has been subject to intense study for decades, with applications spanning a wide variety of fields. The state-of-the-art algorithm is an O(n^{1/4+ϵ})-factor approximation (for any ϵ>0) due to Bhaskara et al. [STOC '10]. Moreover, the so-called log-density framework predicts that this is optimal, i.e. it is impossible for an efficient algorithm to achieve an O(n^{1/4−ϵ})-factor approximation. In the average case, Densest k-Subgraph is a prototypical noisy inference task which is conjectured to exhibit a statistical-computational gap. In this work, we provide the strongest evidence yet of hardness for Densest k-Subgraph by showing matching lower bounds against the powerful Sum-of-Squares (SoS) algorithm, a meta-algorithm based on convex programming that achieves state-of-art algorithmic guarantees for many optimization and inference problems. For k ≤ n^1/2, we obtain a degree n^δ SoS lower bound for the hard regime as predicted by the log-density framework. To show this, we utilize the modern framework for proving SoS lower bounds on average-case problems pioneered by Barak et al. [FOCS '16]. A key issue is that small denser-than-average subgraphs in the input will greatly affect the value of the candidate pseudo-expectation operator around the subgraph. To handle this challenge, we devise a novel matrix factorization scheme based on the positive minimum vertex separator. We then prove an intersection tradeoff lemma to show that the error terms when using this separator are indeed small.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Date Published:
Journal Name:
STOC 2023: Proceedings of the 55th Annual ACM Symposium on Theory of Computing
Page Range / eLocation ID:
84 to 95
Medium: X
Orlando FL USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Computing a dense subgraph is a fundamental problem in graph mining, with a diverse set of applications ranging from electronic commerce to community detection in social networks. In many of these applications, the underlying context is better modelled as a weighted hypergraph that keeps evolving with time. This motivates the problem of maintaining the densest subhypergraph of a weighted hypergraph in a dynamic setting, where the input keeps changing via a sequence of updates (hyperedge insertions/deletions). Previously, the only known algorithm for this problem was due to Hu et al. [19]. This algorithm worked only on unweighted hypergraphs, and had an approximation ratio of (1 +ϵ)r2 and an update time of O(poly(r, log n)), where r denotes the maximum rank of the input across all the updates. We obtain a new algorithm for this problem, which works even when the input hypergraph is weighted. Our algorithm has a significantly improved (near-optimal) approximation ratio of (1 +ϵ) that is independent of r, and a similar update time of O(poly(r, log n)). It is the first (1 +ϵ)-approximation algorithm even for the special case of weighted simple graphs. To complement our theoretical analysis, we perform experiments with our dynamic algorithm on large-scale, real-world data-sets. Our algorithm significantly outperforms the state of the art [19] both in terms of accuracy and efficiency. 
    more » « less
  2. Abstract

    We consider the problem of covering multiple submodular constraints. Given a finite ground setN, a weight function$$w: N \rightarrow \mathbb {R}_+$$w:NR+,rmonotone submodular functions$$f_1,f_2,\ldots ,f_r$$f1,f2,,froverNand requirements$$k_1,k_2,\ldots ,k_r$$k1,k2,,krthe goal is to find a minimum weight subset$$S \subseteq N$$SNsuch that$$f_i(S) \ge k_i$$fi(S)kifor$$1 \le i \le r$$1ir. We refer to this problem asMulti-Submod-Coverand it was recently considered by Har-Peled and Jones (Few cuts meet many point sets. CoRR.arxiv:abs1808.03260Har-Peled and Jones 2018) who were motivated by an application in geometry. Even with$$r=1$$r=1Multi-Submod-Covergeneralizes the well-known Submodular Set Cover problem (Submod-SC), and it can also be easily reduced toSubmod-SC. A simple greedy algorithm gives an$$O(\log (kr))$$O(log(kr))approximation where$$k = \sum _i k_i$$k=ikiand this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm forMulti-Submod-Coverthat covers each constraint to within a factor of$$(1-1/e-\varepsilon )$$(1-1/e-ε)while incurring an approximation of$$O(\frac{1}{\epsilon }\log r)$$O(1ϵlogr)in the cost. Second, we consider the special case when each$$f_i$$fiis a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover (Partial-SC), covering integer programs (CIPs) and multiple vertex cover constraints Bera et al. (Theoret Comput Sci 555:2–8 Bera et al. 2014). Both these algorithms are based on mathematical programming relaxations that avoid the limitations of the greedy algorithm. We demonstrate the implications of our algorithms and related ideas to several applications ranging from geometric covering problems to clustering with outliers. Our work highlights the utility of the high-level model and the lens of submodularity in addressing this class of covering problems.

    more » « less
  3. We prove several hardness results for training depth-2 neural networks with the ReLU activation function; these networks are simply weighted sums (that may include negative coefficients) of ReLUs. Our goal is to output a depth-2 neural network that minimizes the square loss with respect to a given training set. We prove that this problem is NP-hard already for a network with a single ReLU. We also prove NP-hardness for outputting a weighted sum of k ReLUs minimizing the squared error (for k>1) even in the realizable setting (i.e., when the labels are consistent with an unknown depth-2 ReLU network). We are also able to obtain lower bounds on the running time in terms of the desired additive error ϵ. To obtain our lower bounds, we use the Gap Exponential Time Hypothesis (Gap-ETH) as well as a new hypothesis regarding the hardness of approximating the well known Densest k-Subgraph problem in subexponential time (these hypotheses are used separately in proving different lower bounds). For example, we prove that under reasonable hardness assumptions, any proper learning algorithm for finding the best fitting ReLU must run in time exponential in (1/epsilon)^2. Together with a previous work regarding improperly learning a ReLU (Goel et al., COLT'17), this implies the first separation between proper and improper algorithms for learning a ReLU. We also study the problem of properly learning a depth-2 network of ReLUs with bounded weights giving new (worst-case) upper bounds on the running time needed to learn such networks both in the realizable and agnostic settings. Our upper bounds on the running time essentially matches our lower bounds in terms of the dependency on epsilon. 
    more » « less
  4. Braverman, Mark (Ed.)
    We present a framework for speeding up the time it takes to sample from discrete distributions $\mu$ defined over subsets of size $k$ of a ground set of $n$ elements, in the regime where $k$ is much smaller than $n$. We show that if one has access to estimates of marginals $\mathbb{P}_{S\sim \mu}[i\in S]$, then the task of sampling from $\mu$ can be reduced to sampling from related distributions $\nu$ supported on size $k$ subsets of a ground set of only $n^{1-\alpha}\cdot \operatorname{poly}(k)$ elements. Here, $1/\alpha\in [1, k]$ is the parameter of entropic independence for $\mu$. Further, our algorithm only requires sparsified distributions $\nu$ that are obtained by applying a sparse (mostly $0$) external field to $\mu$, an operation that for many distributions $\mu$ of interest, retains algorithmic tractability of sampling from $\nu$. This phenomenon, which we dub domain sparsification, allows us to pay a one-time cost of estimating the marginals of $\mu$, and in return reduce the amortized cost needed to produce many samples from the distribution $\mu$, as is often needed in upstream tasks such as counting and inference. For a wide range of distributions where $\alpha=\Omega(1)$, our result reduces the domain size, and as a corollary, the cost-per-sample, by a $\operatorname{poly}(n)$ factor. Examples include monomers in a monomer-dimer system, non-symmetric determinantal point processes, and partition-constrained Strongly Rayleigh measures. Our work significantly extends the reach of prior work of Anari and Derezi\'nski who obtained domain sparsification for distributions with a log-concave generating polynomial (corresponding to $\alpha=1$). As a corollary of our new analysis techniques, we also obtain a less stringent requirement on the accuracy of marginal estimates even for the case of log-concave polynomials; roughly speaking, we show that constant-factor approximation is enough for domain sparsification, improving over $O(1/k)$ relative error established in prior work. 
    more » « less
  5. Chakrabarti, Amit ; Swamy, Chaitanya (Ed.)
    A Boolean maximum constraint satisfaction problem, Max-CSP(f), is specified by a predicate f:{-1,1}^k → {0,1}. An n-variable instance of Max-CSP(f) consists of a list of constraints, each of which applies f to k distinct literals drawn from the n variables. For k = 2, Chou, Golovnev, and Velusamy [Chou et al., 2020] obtained explicit ratios characterizing the √ n-space streaming approximability of every predicate. For k ≥ 3, Chou, Golovnev, Sudan, and Velusamy [Chou et al., 2022] proved a general dichotomy theorem for √ n-space sketching algorithms: For every f, there exists α(f) ∈ (0,1] such that for every ε > 0, Max-CSP(f) is (α(f)-ε)-approximable by an O(log n)-space linear sketching algorithm, but (α(f)+ε)-approximation sketching algorithms require Ω(√n) space. In this work, we give closed-form expressions for the sketching approximation ratios of multiple families of symmetric Boolean functions. Letting α'_k = 2^{-(k-1)} (1-k^{-2})^{(k-1)/2}, we show that for odd k ≥ 3, α(kAND) = α'_k, and for even k ≥ 2, α(kAND) = 2α'_{k+1}. Thus, for every k, kAND can be (2-o(1))2^{-k}-approximated by O(log n)-space sketching algorithms; we contrast this with a lower bound of Chou, Golovnev, Sudan, Velingker, and Velusamy [Chou et al., 2022] implying that streaming (2+ε)2^{-k}-approximations require Ω(n) space! We also resolve the ratio for the "at-least-(k-1)-1’s" function for all even k; the "exactly-(k+1)/2-1’s" function for odd k ∈ {3,…,51}; and fifteen other functions. We stress here that for general f, the dichotomy theorem in [Chou et al., 2022] only implies that α(f) can be computed to arbitrary precision in PSPACE, and thus closed-form expressions need not have existed a priori. Our analyses involve identifying and exploiting structural "saddle-point" properties of this dichotomy. Separately, for all threshold functions, we give optimal "bias-based" approximation algorithms generalizing [Chou et al., 2020] while simplifying [Chou et al., 2022]. Finally, we investigate the √ n-space streaming lower bounds in [Chou et al., 2022], and show that they are incomplete for 3AND, i.e., they fail to rule out (α(3AND})-ε)-approximations in o(√ n) space. 
    more » « less