Augmented Reality (AR) has been widely hailed as a representative of ultra-high bandwidth and ultra-low latency apps that will be enabled by 5G networks. While single-user AR can perform AR tasks locally on the mobile device, multi-user AR apps, which allow multiple users to interact within the same physical space, critically rely on the cellular network to support user interactions. However, a recent study showed that multi-user AR apps can experience very high end-to-end latency when running over LTE, rendering user interaction practically infeasible. In this paper, we study whether 5G mmWave, which promises significant bandwidth and latency improvements over LTE, can support multi-user AR by conducting an in-depth measurement study of the same popular multi-user AR app over both LTE and 5G mmWave. Our measurement and analysis show that: (1) The E2E AR latency over LTE is significantly lower compared to the values reported in the previous study. However, it still remains too high for practical user interaction. (2) 5G mmWave brings no benefits to multi-user AR apps. (3) While 5G mmWave reduces the latency of the uplink visual data transmission, there are other components of the AR app that are independent of the network technology and account for a significant fraction of the E2E latency. (4) The app drains 66% more network energy, which translates to 28% higher total energy over 5G mmWave compared to over LTE.
more »
« less
Leveraging Program Analysis to Reduce User-Perceived Latency in Mobile Applications
Reducing network latency in mobile applications is an effective way of improving the mobile user experience and has tangible economic benefits. This paper presents PALOMA, a novel client-centric technique for reducing the network latency by prefetching HTTP requests in Android apps. Our work leverages string analysis and callback control-flow analysis to automatically instrument apps using PALOMA’s rigorous formulation of scenarios that address “what” and “when” to prefetch. PALOMA has been shown to incur significant runtime savings (several hundred milliseconds per prefetchable HTTP request), both when applied on a reusable evaluation benchmark we have developed and on real applications.
more »
« less
- Award ID(s):
- 1717963
- PAR ID:
- 10057870
- Date Published:
- Journal Name:
- International Conference on Software Engineering
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Interactive mobile applications like web browsing and gaming are known to benefit significantly from low latency networking, as applications communicate with cloud servers and other users' devices. Emerging mobile channel standards have not met these needs: 5G's general-purpose eMBB channel has much higher bandwidth than 4G but empirically offers little improvement for common latency-sensitive applications, while its ultra-low-latency URLLC channel is targeted at only specific applications with very low bandwidth requirements. We explore a different direction for wireless channel design to address the fundamental bandwidth-latency tradeoff: utilizing two channels -- one high bandwidth, one low latency -- simultaneously to improve performance of common Internet applications. We design DChannel, a fine-grained packet-steering scheme that takes advantage of these parallel channels to transparently improve application performance. With 5G channels, our trace-driven and live network experiments show that even though URLLC offers just 1% of the bandwidth of eMBB, using both channels can improve web page load time and responsiveness of common mobile apps by 16-40% compared to using exclusively eMBB. This approach may provide service providers important incentives to make low latency channels available for widespread use.more » « less
-
Interactive mobile applications like web browsing and gaming are known to benefit significantly from low latency networking, as applications communicate with cloud servers and other users' devices. Emerging mobile channel standards have not met these needs: 5G's general-purpose eMBB channel has much higher bandwidth than 4G but empirically offers little improvement for common latency-sensitive applications, while its ultra-low-latency URLLC channel is targeted at only specific applications with very low bandwidth requirements. We explore a different direction for wireless channel design to address the fundamental bandwidth-latency tradeoff: utilizing two channels -- one high bandwidth, one low latency -- simultaneously to improve performance of common Internet applications. We design DChannel, a fine-grained packet-steering scheme that takes advantage of these parallel channels to transparently improve application performance. With 5G channels, our trace-driven and live network experiments show that even though URLLC offers just 1% of the bandwidth of eMBB, using both channels can improve web page load time and responsiveness of common mobile apps by 16-40% compared to using exclusively eMBB. This approach may provide service providers important incentives to make low latency channels available for widespread use.more » « less
-
Today’s mobile apps employ third-party advertising and tracking (A&T) libraries, which may pose a threat to privacy. State-of-the-art detects and blocks outgoing A&T HTTP/S requests by using manually curated filter lists (e.g. EasyList), and recently, using machine learning approaches. The major bottleneck of both filter lists and classifiers is that they rely on experts and the community to inspect traffic and manually create filter list rules that can then be used to block traffic or label ground truth datasets. We propose NoMoATS – a system that removes this bottleneck by reducing the daunting task of manually creating filter rules, to the much easier and scalable task of labeling A&T libraries. Our system leverages stack trace analysis to automatically label which network requests are generated by A&T libraries. Using NoMoATS, we collect and label a new mobile traffic dataset. We use this dataset to train decision tree classifiers, which can be applied in real-time on the mobile device and achieve an average F-score of 93%. We show that both our automatic labeling and our classifiers discover thousands of requests destined to hundreds of different hosts, previously undetected by popular filter lists. To the best of our knowledge, our system is the first to (1) automatically label which mobile network requests are engaged in A&T, while requiring to only manually label libraries to their purpose and (2) apply on-device machine learning classifiers that operate at the granularity of URLs, can inspect connections across all apps, and detect not only ads, but also tracking.more » « less
-
Serverless computing services are offered by major cloud service providers such as Google Cloud Platform, Amazon Web Services, and Microsoft Azure. The primary purpose of the services is to offer efficiency and scalability in modern software development and IT operations while reducing overall costs and operational complexity. However, prospective customers often question which serverless service will best meet their organizational and business needs. This study analyzed the features, usability, and performance of three serverless cloud computing platforms: Google Cloud’s Cloud Run, Amazon Web Service’s App Runner, and Microsoft Azure’s Container Apps. The analysis was conducted with a containerized mobile application designed to track real-time bus locations for San Antonio public buses on specific routes and provide estimated arrival times for selected bus stops. The study evaluated various system-related features, including service configuration, pricing, and memory and CPU capacity, along with performance metrics such as container latency, distance matrix API response time, and CPU utilization for each service. The results of the analysis revealed that Google’s Cloud Run demonstrated better performance and usability than AWS’s App Runner and Microsoft Azure’s Container Apps. Cloud Run exhibited lower latency and faster response time for distance matrix queries. These findings provide valuable insights for selecting an appropriate serverless cloud service for similar containerized web applications.more » « less
An official website of the United States government

