skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving Research and Experience Reports of Pre-College Computing Activities: A Gap Analysis
This paper provides a detailed examination of pre-college computing activities as reported in three Association of Computing Machinery (ACM) venues (2012-2016). Ninety-two articles describing informal learning activities were reviewed for 24 program elements (i.e., activity components, and student/instructor demographics). These 24 program elements were defined and shaped by a virtual focus group study and the articles themselves. Results indicate that the majority of authors adequately report age/grade levels of participants, number of participants, the type of activity, when the activity was offered, the tools/languages used in the activity, and whether the activity was required or elective. However, there is a deficiency in reporting many other important and foundational program elements, including contact hours of activity participants, clear learning objectives, the prior experience of participants (students and instructors), and many more. In conjunction with previous work, this paper provides recommendations to reduce these deficiencies. The Recommendations for Reporting Pre-College Computing Activities (Version 1.0) are presented to help researchers improve the quality of papers, set a standard of necessary data needed to replicate studies, and provide a basis for comparing activities and activity outcomes across multiple studies and experiences.  more » « less
Award ID(s):
1625335
PAR ID:
10057992
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
SIGCSE '18 Proceedings of the 49th ACM Technical Symposium on Computer Science Education
Page Range / eLocation ID:
964 to 969
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper provides a detailed examination of pre-college computing activities as reported in three Association of Computing Machinery (ACM) venues (2012-2016). Ninety-two articles describing informal learning activities were reviewed for 24 program elements (i.e., activity components, and student/instructor demographics). These 24 program elements were defined and shaped by a virtual focus group study and the articles themselves. Results indicate that the majority of authors adequately report age/grade levels of participants, number of participants, the type of activity, when the activity was offered, the tools/languages used in the activity, and whether the activity was required or elective. However, there is a deficiency in reporting many other important and foundational program elements, including contact hours of activity participants, clear learning objectives, the prior experience of participants (students and instructors), and many more. In conjunction with previous work, this paper provides recommendations to reduce these deficiencies. The Recommendations for Reporting Pre-College Computing Activities (Version 1.0) are presented to help researchers improve the quality of papers, set a standard of necessary data needed to replicate studies, and provide a basis for comparing activities and activity outcomes across multiple studies and experiences. 
    more » « less
  2. There has been considerable investment in pre-college educational interventions for all areas of STEM (including computer science). The goal of many of these initiatives is to engage and interest students early in their educational career. In this study, a systematic literature review was undertaken to determine the demographic and program data collected and reported for the field of computing education and for other STEM disciplines for activities that were not designed as part of the formal in-class curriculum (e.g., outreach activities). A comparison-contrast analysis of the resulting 342 articles found similarities and key differences in the reporting of this data as well as overarching characteristics of missing or incomplete reporting across disciplines. Authors from both fields reported equally well in the four categories studied: information about evaluation, participant gender, participant race and/or ethnicity, and activity demographics. However, the computing education articles were more likely to have clearly stated research questions and comparative analysis based on demographic characteristics. They were less likely to include the number of participants in the study, participant age/grade level, socioeconomic status, disability information, location of intervention, and instructor demographics. Through this analysis, it was determined that reporting can be improved across all disciplines to improve the quantity of data needed to replicate studies and to provide complete data sets that provide for the comparison of collected data. 
    more » « less
  3. Shepherd, Virginia L; Chester, Ann; Bass, Kristin M (Ed.)
    Sustained innovation and economic strength of the U.S depends on a greater participation of underrepresented minorities in science, technology, engineering, and mathematics (STEM). University-based outreach programs that serve African American and other minority populations should do more to infuse invention education in activities that engage pre-college students from these groups to motivate them to pursue STEM degrees. The Research, Discovery, and Innovation (RDI) Summer Institute is a design and science entrepreneurship program that is offered at North Carolina Central University to high school seniors who have been accepted for admission to a STEM degree program at the university. This study found the RDI Summer Institute program to be effective based on proximal outcomes of gains in composite entrepreneurial thinking skills (entrepreneurial, managerial, engineering design, and technical skills) as perceived by the participants and measured by pre- and post-surveys. Eighty-seven percent of the pre-college participants were African Americans, showed high levels of creativity and innovativeness, and presented product ideas that were conscientious in meeting their community needs. Program impact was assessed based on near-term and distal academic outcomes in college through a rigorously designed quasi-experiment which compared 31 case-control matched pairs of students who had been RDI participants and non-RDI participants. A conditional logistic regression showed first-year retention in STEM degree programs for students who had been RDI participants was five times that of students who had been non-RDI participants. Additionally, first-year STEM retention in differential comparisons favored female students, students from very low/low SES households, and students from single parent households. Also, students who had been RDI participants performed higher in STEM gatekeeper courses, and a strong positive impact of the RDI Summer Institute program was associated with higher STEM persistence even two and three years after pre-college students participated. 
    more » « less
  4. Generative Artificial Intelligence (GAI), such as OpenAI’s ChatGPT, has rapidly emerged as a transformative tool in higher education, offering opportunities to enhance teaching and learning. This paper describes the design and implementation of ChatGPT-integrated curriculum activities, featuring coding learning in psychology and conceptual discussions in physics, and presents the findings of a year-long experimental study in both types of classrooms. Our findings suggest that students generally found ChatGPT easy to use and beneficial to their learning, reporting improved confidence, motivation, and engagement. However, its ability to address individual needs or replace instructors was viewed less favorably. Comparative analyses showed that coding activities in psychology led to higher levels of activity satisfaction and perceived usefulness of ChatGPT compared to the more abstract discussion activities in physics. While graduate students were more enthusiastic about using ChatGPT for skill acquisition than undergraduates, demographic factors such as gender, race, and first-generation college status showed no significant influence on such perceptions. Meanwhile, instructors’ reflections emphasize the importance of thoughtful integration, technical support, and pedagogical balance to maximize GAI’s potential while mitigating its limitations. Recommendations for integrating GAI into teaching practices and future research directions are discussed, contributing to the evolving discourse on GAI’s role in transforming modern classrooms. 
    more » « less
  5. It is important for future engineers to understand themselves in relation to the many cultural influences they may encounter during their career, and to confront their own biases when interacting with colleagues whose cultural backgrounds are different from their own. This paper describes and evaluates a series of nine diversity, equity, and inclusion (DEI) workshops developed and implemented during the summer of 2022 for high school and entering first-year college students enrolled in the Research, Academics, and Mentoring Pathways (RAMP) sixweek engineering summer bridge program at University of Massachusetts Lowell. The workshops incorporated activities designed to create an environment fostering respect, belonging, and acceptance to make teamwork more inclusive and effective. Each workshop was based on collaborative learning and used a broad range of strategies to engage students as active participants in learning about diversity, equity, and inclusion within the context of teamwork. To develop the workshops, the facilitators aligned the activities with key themes from chapters in the book From Athletics to Engineering: 8 Ways to Support Diversity, Equity, and Inclusion for All [1]. The summer bridge program was evaluated using quantitative and qualitative data collected throughout the program and upon its conclusion tracking students’ reactions and levels of engagement in each of the program components. This included a pre-survey, mid-semester survey, post-survey, and weekly journal prompts on Google Classroom. We also used the Universality-Diversity scale [2] to measure any pre-post changes in students’ attitudes towards diversity. With regard to the workshops, an analysis of student responses indicated a high level of satisfaction and sense of accomplishment. Students reported they enjoyed getting to know each other better and that the DEI activities were interactive, educational, and engaging. 
    more » « less