skip to main content


Title: Numerical modeling and optimization of a V-groove warm water cold-plate
In electronics cooling, water is increasingly replacing air for applications requiring high heat flux. Water is the ideal substitute due to its high specific heat capacity and density. Indeed, high values of heat capacity (high density and specific heat capacity) enable water to receive, store and carry higher amounts of energy compared to air. Water's incompressibility and very low specific volume also requires smaller amounts of mechanical work for fluid circulation. Using warm water instead of chilled water makes the cooling process more economical, but requires more efficiently designed cold-plates. Our current work focuses on modeling and optimization of a V-groove mini-channel cold-plate using warm water as the coolant. Our results show that the performance of an impinging channel heat sink is significantly different compared to parallel channel designs. Dividing the flow into two branches cuts the fluid velocity and flow path in half for the impinging design. This reduction in the fluid velocity and flow length affects the developing thermal boundary layer and is an important consideration for a shorter length heat exchanger (where the channel length is comparable to the thermal entrance length). Distributing the coolant uniformly to every channel is a challenge for impinging cold-plates where there are strict limitations on size.  more » « less
Award ID(s):
1738793
NSF-PAR ID:
10057999
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), 2017 33rd
Page Range / eLocation ID:
314 to 319
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Miniaturization of microelectronic components comes at a price of high heat flux density. By adopting liquid cooling, the rising demand of high heat flux devices can be met while the reliability of the microelectronic devices can also be improved to a greater extent. Liquid cooled cold plates are largely replacing air based heat sinks for electronics in data center applications, thanks to its large heat carrying capacity. A bench level study was carried out to characterize the thermohydraulic performance of two microchannel cold plates which uses warm DI water for cooling Multi Chip Server Modules (MCM). A laboratory built mock package housing mock dies and a heat spreader was employed while assessing the thermal performance of two different cold plate designs at varying coolant flow rate and temperature. The case temperature measured at the heat spreader for varying flow rates and input power were essential in identifying the convective resistance. The flow performance was evaluated by measuring the pressure drop across cold plate module at varying flow rates. Cold plate with the enhanced microchannel design yielded better results compared to a traditional parallel microchannel design. The study conducted at higher coolant temperatures yielded lower pressure drop values with no apparent change in the thermal behavior using different cold plates. The tests conducted after reversing the flow direction in microchannels provide an insight at the effect of neighboring dies on each other and reveal the importance of package specific cold plate designs for top performance. The experimental results were validated using a numerical model which are further optimized for improved geometric designs. 
    more » « less
  2. Modern day data centers are operated at high power for increased power density, maintenance, and cooling which covers almost 2 percent (70 billion kilowatt-hours) of the total energy consumption in the US. IT components and cooling system occupy the major portion of this energy consumption. Although data centers are designed to perform efficiently, cooling the high-density components is still a challenge. So, alternative methods to improve the cooling efficiency has become the drive to reduce the cooling cost. As liquid cooling is more efficient for high specific heat capacity, density, and thermal conductivity, hybrid cooling can offer the advantage of liquid cooling of high heat generating components in the traditional air-cooled servers. In this experiment, a 1U server is equipped with cold plate to cool the CPUs while the rest of the components are cooled by fans. In this study, predictive fan and pump failure analysis are performed which also helps to explore the options for redundancy and to reduce the cooling cost by improving cooling efficiency. Redundancy requires the knowledge of planned and unplanned system failures. As the main heat generating components are cooled by liquid, warm water cooling can be employed to observe the effects of raised inlet conditions in a hybrid cooled server with failure scenarios. The ASHRAE guidance class W4 for liquid cooling is chosen for our experiment to operate in a range from 25°C – 45°C. The experiments are conducted separately for the pump and fan failure scenarios. Computational load of idle, 10%, 30%, 50%, 70% and 98% are applied while powering only one pump and the miniature dry cooler fans are controlled externally to maintain constant inlet temperature of the coolant. As the rest of components such as DIMMs & PCH are cooled by air, maximum utilization for memory is applied while reducing the number fans in each case for fan failure scenario. The components temperatures and power consumption are recorded in each case for performance analysis 
    more » « less
  3. Miniaturization and high heat flux of power electronic devices have posed a colossal challenge for adequate thermal management. Conventional air-cooling solutions are inadequate for high-performance electronics. Liquid cooling is an alternative solution thanks to the higher specific heat and latent heat associated with the coolants. Liquid-cooled cold plates are typically manufactured by different approaches such as: skived, forged, extrusion, electrical discharge machining. When researchers are facing challenges at creating complex geometries in small spaces, 3D-printing can be a solution. In this paper, a 3D-printed cold plate was designed and characterized with water coolant. The printed metal fin structures were strong enough to undergo pressure from the fluid flow even at high flow rates and small fin structures. A copper block with top surface area of 1 inch by 1 inch was used to mimic a computer chip. Experimental data has good match with a simulation model which was built using commercial software 6SigmaET. Effects of geometry parameters and operating parameters were investigated. Fin diameter was varied from 0.3 mm to 0.5 mm and fin height was maintained at 2 mm. A special manifold was designed to maximize the surface contact area between coolant and metal surface and therefore minimize thermal resistance. The flow rate was varied from 0.75 L/min to 2 L/min and coolant inlet temperature was varied from 25 to 48 oC. It was observed that for the coolant inlet temperature 25 oC and aluminum cold plate, the junction temperature was kept below 63.2 oC at input power 350 W and pressure drop did not exceed 23 Kpa. Effects of metal materials used in 3D-printing on the thermal performance of the cold plate were also studied in detail. 
    more » « less
  4. More than ever before, data centers must deploy robust thermal solutions to adequately host the high-density and high-performance computing that is in high demand. The newer generation of central processing units (CPUs) and graphics processing units (GPUs) has substantially higher thermal power densities than previous generations. In recent years, more data centers rely on liquid cooling for the high-heat processors inside the servers and air cooling for the remaining low-heat information technology equipment. This hybrid cooling approach creates a smaller and more efficient data center. The deployment of direct-to-chip cold plate liquid cooling is one of the mainstream approaches to providing concentrated cooling to targeted processors. In this study, a processor-level experimental setup was developed to evaluate the cooling performance of a novel computer numerical control (CNC) machined nickel-plated impinging cold plate on a 1 in.  1 in. mock heater that represents a functional processing unit. The pressure drop and thermal resistance performance curves of the electroless nickel-plated cold plate are compared to those of a pure copper cold plate. A temperature uniformity analysis is done using compuational fluid dynamics and compared to the actual test data. Finally, the CNC machined pure copper one is compared to other reported cold plates to demonstrate its superiority of the design with respect to the cooling performance. 
    more » « less
  5. null (Ed.)
    Abstract

    In today’s world, most data centers have multiple racks with numerous servers in each of them. The high amount of heat dissipation has become the largest server-level cooling problem for the data centers. The higher dissipation required, the higher is the total energy required to run the data center. Although still the most widely used cooling methodology, air cooling has reached its cooling capabilities especially for High-Performance Computing data centers. Liquid-cooled servers have several advantages over their air-cooled counterparts, primarily of which are high thermal mass, lower maintenance. Nano-fluids have been used in the past for improving the thermal efficiency of traditional dielectric coolants in the power electronics and automotive industry. Nanofluids have shown great promise in improving the convective heat transfer properties of the coolants due to a proven increase in thermal conductivity and specific heat capacity.

    The present research investigates the thermal enhancement of the performance of de-ionized water-based dielectric coolant with Copper nanoparticles for a higher heat transfer from the server cold plates. Detailed 3-D modeling of a commercial cold plate is completed and the CFD analysis is done in a commercially available CFD code ANSYS CFX. The obtained results compare the improvement in heat transfer due to improvement in coolant properties with data available in the literature.

     
    more » « less