skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The dynamics of rising oil-coated bubbles: experiments and simulations
Air bubbles rising through an aqueous medium have been studied extensively and are routinely used for the separation of particulates via froth flotation, a key step in many industrial processes. Oil-coated bubbles can be more effective for separating hydrophilic particles with low affinity for the air–water interface, but the rise dynamics of oil-coated bubbles has not yet been explored. In the present work, we report the first systematic study of the shape and rise trajectory of bubbles engulfed in a layer of oil. Results from direct observation of the coated bubbles with a high-speed camera are compared to computer simulations and confirm a pronounced effect of the oil coat on the bubble dynamics. We consistently find that the oil-coated bubbles display a more spherical shape and straighter trajectory, yet slower rise than uncoated bubbles of comparable size. These characteristics may provide practical benefits for flotation separations with oil-coated bubbles.  more » « less
Award ID(s):
1706475
PAR ID:
10058132
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
14
Issue:
14
ISSN:
1744-683X
Page Range / eLocation ID:
2724 to 2734
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jetting dynamics from bursting bubbles play a key role in mediating mass and momentum transport across the air–liquid interface, and have attracted widespread interest from researchers across disciplines. In marine environments, this phenomenon has drawn considerable attention due to its role in releasing biochemical contaminants, such as extracellular polymeric substances, into the atmosphere through aerosol production. These biocontaminants often exhibit non-Newtonian characteristics, yet the physics of bubble bursting with a rheologically complex layer at the bubble–liquid interface remains largely unexplored. In this study, we experimentally investigate the jetting dynamics of bubble bursting events in the presence of such a polymeric compound layer. Using bubbles coated by a polyethylene oxide solution, we document the cavity collapse and jetting dynamics produced by bubble bursting. At a fixed polymer concentration, the jet velocity increases while the jet radius decreases with an increasing compound layer volume fraction, as a result of stronger capillary wave damping due to capillary wave separation at the compound interface as well as the formation of smaller cavity cone angles during bubble cavity collapse. These dynamics produce smaller and more numerous jet drops. Meanwhile, as the polymer concentration increases, the jet velocity decreases while the jet radius increases for the same compound layer fraction due to the increasing viscoelastic stresses. In addition, fewer jet drops are ejected as the jets become slower and broader with increasing polymer concentration, as viscoelastic stresses persist throughout the jet formation and thinning process. We further obtain, for the first time, a regime map delineating the conditions for jet drop ejection versus no jet drop ejection in bursting bubbles coated with a polymeric compound layer. Our results may provide new insights into the mechanisms of mass transport of organic materials in bubble-mediated aerosolization processes, advancing our understanding of marine biology and environmental science. 
    more » « less
  2. Abstract Direct numerical simulation (DNS) is often used to uncover and highlight physical phenomena that are not properly resolved using other computational fluid dynamics methods due to shortcuts taken in the latter to cheapen computational cost. In this work, we use DNS along with interface tracking to take an in-depth look at bubble formation, departure, and ascent through water. To form the bubbles, air is injected through a novel orifice geometry not unlike that of a flute submerged underwater, which introduces phenomena that are not typically brought to light in conventional orifice studies. For example, our single-phase simulations show a significant leaning effect, wherein pressure accumulating at the trailing nozzle edges leads to asymmetric discharge through the nozzle hole and an upward bias in the flow in the rest of the pipe. In our two-phase simulations, this effect is masked by the surface tension of the bubble sitting on the nozzle, but it can still be seen following departure events. After bubble departure, we observe the bubbles converge toward an ellipsoidal shape, which has been validated by experiments. As the bubbles rise, we note that local variations in the vertical velocity cause the bubble edges to flap slightly, oscillating between relatively low and high velocities at the edges. 
    more » « less
  3. Abstract We experimentally investigate the depth distributions and dynamics of air bubbles entrained by breaking waves in a wind‐wave channel over a range of breaking wave conditions using high‐resolution imaging and three‐dimensional bubble tracking. Below the wave troughs, the bubble concentration decays exponentially with depth. Patches of entrained bubbles are identified for each breaking wave, and statistics describing the horizontal and vertical transport are presented. Aggregating our results, we find a stream‐wise transport faster than the associated Stokes drift and modified Stokes drift for buoyant particles, which is an effect not accounted for in current models of bubble transport. This enhancement in transport is attributed to the flow field induced by the breaking waves and is relevant for the transport of bubbles, oil droplets, and microplastics at the ocean surface. 
    more » « less
  4. Abstract The rheology of lavas and magmas exerts a strong control on the dynamics and hazards posed by volcanic eruptions. Magmas and lavas are complex mixtures of silicate melt, suspended crystals, and gas bubbles. To improve the understanding of the dynamics and effective rheology of magmas and lavas, we performed dam‐break flow experiments using suspensions of silicone oil, sesame seeds, and N2O bubbles. Experiments were run inside a magnetic resonance imaging (MRI) scanner to provide imaging of the flow interior. We varied the volume fraction of sesame seeds between 0 and 0.48, and of bubbles between 0 and 0.21. MRI phase‐contrast velocimetry was used to measure liquid velocity. We fit an effective viscosity to the velocity data by approximating the stress using lubrication theory and the imaged shape of the free surface. In experiments with both particles and bubbles (three‐phase suspensions), we observed shear banding in which particle‐poor regions deform with a lower effective viscosity and dominate flow propagation speed. Our observations demonstrate the importance of considering variations in phase distributions within magmatic fluids and their implications on the dynamics of volcanic eruptions. 
    more » « less
  5. Abstract From air-sea gas exchange, oil pollution, to bioreactors, the ubiquitous fragmentation of bubbles/drops in turbulence has been modeled by relying on the classical Kolmogorov-Hinze paradigm since the 1950s. This framework hypothesizes that bubbles/drops are broken solely by eddies of the same size, even though turbulence is well known for its wide spectrum of scales. Here, by designing an experiment that can physically and cleanly disentangle eddies of various sizes, we report the experimental evidence to challenge this hypothesis and show that bubbles are preferentially broken by the sub-bubble-scale eddies. Our work also highlights that fragmentation cannot be quantified solely by the stress criterion or the Weber number; The competition between different time scales is equally important. Instead of being elongated slowly and persistently by flows at their own scales, bubbles are fragmented in turbulence by small eddies via a burst of intense local deformation within a short time. 
    more » « less