skip to main content


This content will become publicly available on May 12, 2024

Title: Magnetic Resonance Imaging of Multi‐Phase Lava Flow Analogs: Velocity and Rheology
Abstract

The rheology of lavas and magmas exerts a strong control on the dynamics and hazards posed by volcanic eruptions. Magmas and lavas are complex mixtures of silicate melt, suspended crystals, and gas bubbles. To improve the understanding of the dynamics and effective rheology of magmas and lavas, we performed dam‐break flow experiments using suspensions of silicone oil, sesame seeds, and N2O bubbles. Experiments were run inside a magnetic resonance imaging (MRI) scanner to provide imaging of the flow interior. We varied the volume fraction of sesame seeds between 0 and 0.48, and of bubbles between 0 and 0.21. MRI phase‐contrast velocimetry was used to measure liquid velocity. We fit an effective viscosity to the velocity data by approximating the stress using lubrication theory and the imaged shape of the free surface. In experiments with both particles and bubbles (three‐phase suspensions), we observed shear banding in which particle‐poor regions deform with a lower effective viscosity and dominate flow propagation speed. Our observations demonstrate the importance of considering variations in phase distributions within magmatic fluids and their implications on the dynamics of volcanic eruptions.

 
more » « less
Award ID(s):
1654588
NSF-PAR ID:
10416417
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
128
Issue:
5
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Three-phase suspensions, of liquid that suspends dispersed solid particles and gas bubbles, are common in both natural and industrial settings. Their rheology is poorly constrained, particularly for high total suspended fractions (≳0.5). We use a dam-break consistometer to characterize the rheology of suspensions of (Newtonian) corn syrup, plastic particles and CO 2 bubbles. The study is motivated by a desire to understand the rheology of magma and lava. Our experiments are scaled to the volcanic system: they are conducted in the non-Brownian, non-inertial regime; bubble capillary number is varied across unity; and bubble and particle fractions are 0 ≤  ϕ gas  ≤ 0.82 and 0 ≤  ϕ solid  ≤ 0.37, respectively. We measure flow-front velocity and invert for a Herschel–Bulkley rheology model as a function of ϕ gas , ϕ solid , and the capillary number. We find a stronger increase in relative viscosity with increasing ϕ gas in the low to intermediate capillary number regime than predicted by existing theory, and find both shear-thinning and shear-thickening effects, depending on the capillary number. We apply our model to the existing community code for lava flow emplacement, PyFLOWGO, and predict increased viscosity and decreased velocity compared with current rheological models, suggesting existing models may not adequately account for the role of bubbles in stiffening lavas. 
    more » « less
  2. Abstract

    Most lava flows carry bubbles and crystals in suspension. From earlier works, it is known that spherical bubbles increase the effective viscosity while bubbles deformed by rapid flow decrease it. Changes in the spatial distribution of bubbles can lead to variable rheology and flow localization and thus modify the resulting lava flow structure and morphology. To understand the roles of bubble and solid phase crystal distributions, we conducted a series of analog experiments of high bubble fraction suspensions. We poured the analog lava on an inclined slope, observed its shape, calculated the velocity field, and monitored its local thickness. A region of localized rapid flow and low vesicularity, whose thickness is thinner than the surrounding area, develops at the center of the bubbly flows. These features suggest that the locally higher liquid fraction decreases the effective viscosity, increases the fluid density, and accelerates the flow. We also found that a halted particle‐bearing bubbly flow can resume flowing. We interpret this to result from the upward vertical separation of bubbles, which generates a liquid‐rich layer at the bottom of the flow. In our experiment, bubbles are basically spherical and decrease the flow velocity, while our estimate suggests that bubbles in natural lava flows could increase or decrease flow velocity. Downstream decreases in flow velocity stops the bubble deformation and can cause a sudden increase of effective viscosity. The vertical segregation of the liquid phase at the slowed flow front may be a way to generate a cavernous shelly paho’eho’e.

     
    more » « less
  3. Abstract

    Caldera-forming eruptions of mushy silicic magma are among the most catastrophic natural events on Earth. In such magmas, crystals form an interlocking framework when their content reaches critical thresholds, resulting in the dramatic increase in viscous resistance to flow. Here, we propose a new mechanism for the ascent of mushy magma based on microstructural observations of crystal-rich silicic pumices and lavas from the Central Andes and decompression experiments. Microstructural data include spherical vesicles and jigsaw-puzzle association of broken crystals in pumices, whereas there is limited breakage of crystals in lavas. These observations insinuate that shearing of magma during ascent was limited. Decompression experiments reveal contrasting interaction between growing gas bubbles and the crystal framework in crystal-rich magma. Under slow decompression typical of effusive eruptions, gas extraction is promoted, whereas under rapid decompression, bubbles are retained and the crystal framework collapses. This feedback between decompression rate, retention of gas bubbles, and integrity of the crystal framework leads to strong non-linearity between magma decompression rate and eruption explosivity. We extend these findings to caldera-forming eruptions of crystal-rich magma where large overpressures are induced by caldera-collapse, resulting in magma plug-flow, rapid decompression facilitated by shear-localization at conduit margins, and explosive eruption.

     
    more » « less
  4. Abstract

    Mafic volcanic activity is dominated by effusive to mildly explosive eruptions. Plinian and ignimbrite-forming mafic eruptions, while rare, are also possible; however, the conditions that promote such explosivity are still being explored. Eruption style is determined by the ability of gas to escape as magma ascends, which tends to be easier in low-viscosity, mafic magmas. If magma permeability is sufficiently high to reduce bubble overpressure during ascent, volatiles may escape from the magma, inhibiting violent explosive activity. In contrast, if the permeability is sufficiently low to retain the gas phase within the magma during ascent, bubble overpressure may drive magma fragmentation. Rapid ascent may induce disequilibrium crystallization, increasing viscosity and affecting the bubble network with consequences for permeability, and hence, explosivity. To explore the conditions that promote strongly explosive mafic volcanism, we combine microlite textural analyses with synchrotron x-ray computed microtomography of 10 pyroclasts from the 12.6 ka mafic Curacautín Ignimbrite (Llaima Volcano, Chile). We quantify microlite crystal size distributions (CSD), microlite number densities, porosity, bubble interconnectivity, bubble number density, and geometrical properties of the porous media to investigate the role of magma degassing processes at mafic explosive eruptions. We use an analytical technique to estimate permeability and tortuosity by combing the Kozeny-Carman relationship, tortuosity factor, and pyroclast vesicle textures. The groundmass of our samples is composed of up to 44% plagioclase microlites, > 85% of which are < 10 µm in length. In addition, we identify two populations of vesicles in our samples: (1) a convoluted interconnected vesicle network produced by extensive coalescence of smaller vesicles (> 99% of pore volume), and (2) a population of very small and completely isolated vesicles (< 1% of porosity). Computed permeability ranges from 3.0 × 10−13to 6.3 × 10−12m2, which are lower than the similarly explosive mafic eruptions of Tarawera (1886; New Zealand) and Etna (112 BC; Italy). The combination of our CSDs, microlite number densities, and 3D vesicle textures evidence rapid ascent that induced high disequilibrium conditions, promoting rapid syn-eruptive crystallization of microlites within the shallow conduit. We interpret that microlite crystallization increased viscosity while simultaneously forcing bubbles to deform as they grew together, resulting in the permeable by highly tortuous network of vesicles. Using the bubble number densities for the isolated vesicles (0.1-3−3 × 104 bubbles per mm3), we obtain a minimum average decompression rate of 1.4 MPa/s. Despite the textural evidence that the Curacautín magma reached the percolation threshold, we propose that rapid ascent suppressed outgassing and increased bubble overpressures, leading to explosive fragmentation. Further, using the porosity and permeability of our samples, we estimated that a bubble overpressure > 5 MPa could have been sufficient to fragment the Curacautín magma. Other mafic explosive eruptions report similar disequilibrium conditions induced by rapid ascent rate, implying that syn-eruptive disequilibrium conditions may control the explosivity of mafic eruptions more generally.

     
    more » « less
  5. Abstract

    Investigating the conditions behind the formation of pyroclast textures and lava flow morphologies is important to understand the dynamics of submarine volcanic eruptions, which are hard to observe. The development of clast textures and lava morphologies depends on the competing effects of their eruption rates and the rates of solidification. While eruption rates are governed by subsurface magmatic processes, the solidification timescales depend on the rate of heat loss from lava to the external water. However, the effect of the speed of lava flow or clast on their solidification timescales under two‐phase (liquid water and vapor bubbles) water boiling conditions is poorly constrained. Using laboratory experiments with remelted igneous rocks, we investigate the effect of the relative motion between lava and external water on its cooling timescale. We use a range of water speed (0–12.5 cm s−1) in our experiments while keeping our sample stationary to simulate a range of relative speed between lava and ambient water. Using transient heat transfer modeling, we find that heat flux from the surface of the sample to the external water overall increases with increasing water speed. We find heat transfer coefficients of up to ∼1.72 × 103 W m−2 K−1. The implications of high heat flux on the formation of solid lava crust under submarine conditions are discussed.

     
    more » « less