skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Dispersion forces play a role in (Me 2 IPr)Fe(NAd)R 2 (Ad = adamantyl; R = neo Pe, 1-nor) insertions and Fe–R bond dissociation enthalpies (BDEs)
The effects of dispersion on migratory insertion reactions and related iron–carbon bond dissociation energies pertaining to (Me 2 IPr)FeR 2 (R = neo Pe, 1-nor), and the conversion of (Me 2 IPr)Fe(NAd)R 2 to (Me 2 IPr)Fe{N(Ad}R)R are investigated via calculations and structural comparisons. Dispersion appears to be an underappreciated, major contributor to common structure and reactivity relationships.  more » « less
Award ID(s):
1664580
NSF-PAR ID:
10058189
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
47
Issue:
17
ISSN:
1477-9226
Page Range / eLocation ID:
6025 to 6030
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The RSSH + H 2 S → RSH + HSSH reaction has been suggested by numerous labs to be important in H 2 S-mediated biological processes. Seven different mechanisms for this reaction (R = CH 3 , as a model) have been studied using the DFT methods (M06-2X and ωB97X-D) with the Dunning aug-cc-pV(T+d)Z basis sets. The reaction of CH 3 SSH with gas phase H 2 S has a very high energy barrier (>45 kcal mol −1 ), consistent with the available experimental observations. A series of substitution reactions R 1 –S–S–H + − S–R 2 (R 1 = Me, t Bu, Ad, R 2 = H, S–Me, S– t Bu, S–Ad) have been studied. The regioselectivity is largely affected by the steric bulkiness of R 1 , but is much less sensitive to R 2 . Thus, when R 1 is Me, all − S–R 2 favorably attack the internal S atom, leading to R 1 –S–S–R 2 . While for R 1 = t Bu, Ad, all − S–R 2 significantly prefer to attack the external S atom to form − S–S–R 2 . These results are in good agreement with the experimental observations. 
    more » « less
  2. Combining experimental and theoretical studies, we investigate the role of R-site (R = Y, Sm, Bi) element on the phase formation and thermal stability of R 2 (Mn 1−x Fe x ) 4 O 10−δ ( x = 0, 0.5, 1) mullite-type oxides. Our results show a distinct R-site dependent phase behavior for mullite-type oxides as Fe is substituted for Mn: 100% mullite-type phase was formed in (Y, Sm, Bi) 2 Mn 4 O 10 ; 55% and 18% of (Y, Sm) 2 Mn 2 Fe 2 O 10−δ was found when R = Y and Sm, respectively, for equal Fe and Mn molar concentrations in the reactants, whereas Bi formed 54% O10- and 42% O9-mixed mullite-type phases. Furthermore, when the reactants contain 100% Fe, no mullite-type phase was formed for R = Y and Sm, but a sub-group transition to Bi 2 Fe 4 O 9 O9-phase was found for R = Bi. Thermogravimetric analysis and density functional theory (DFT) calculation results show a decreasing thermal stability in O10-type structure with increasing Fe incorporation; for example, the decomposition temperature is 1142 K for Bi 2 Mn 2 Fe 2 O 10−δ vs. 1217 K for Bi 2 Mn 4 O 10 . On the other hand, Bi 2 Fe 4 O 9 O9-type structure is found to be thermally stable up to 1227 K. These findings are explained by electronic structure calculations: (1) as Fe concentration increases, Jahn–Teller distortion results in mid band-gap empty states from unstable Fe 4+ occupied octahedra, which is responsible for the decrease in O10 structure stability; (2) the directional sp orbital hybridization unique to Bi effectively stabilizes the mullite-type structure as Fe replaces Mn. 
    more » « less
  3. Abstract

    Multinuclear solid‐state NMR studies of Cp*2Sc−R (Cp*=pentamethylcyclopentadienyl; R=Me, Ph, Et) and DFT calculations show that the Sc−Et complex contains a β‐CH agostic interaction. The static central transition45Sc NMR spectra show that the quadrupolar coupling constants (Cq) follow the trend of Ph≈Me>Et, indicating that the Sc−R bond is different in Cp*2Sc−Et compared to the methyl and phenyl complexes. Analysis of the chemical shift tensor (CST) shows that the deshielding experienced by Cβ in Sc−CH2CH3is related to coupling between the filled σC‐Corbital and the vacantorbital.

     
    more » « less
  4. Abstract

    Multinuclear solid‐state NMR studies of Cp*2Sc−R (Cp*=pentamethylcyclopentadienyl; R=Me, Ph, Et) and DFT calculations show that the Sc−Et complex contains a β‐CH agostic interaction. The static central transition45Sc NMR spectra show that the quadrupolar coupling constants (Cq) follow the trend of Ph≈Me>Et, indicating that the Sc−R bond is different in Cp*2Sc−Et compared to the methyl and phenyl complexes. Analysis of the chemical shift tensor (CST) shows that the deshielding experienced by Cβ in Sc−CH2CH3is related to coupling between the filled σC‐Corbital and the vacantorbital.

     
    more » « less
  5. The gene encoding the cyanobacterial ferritinSynFtn is up-regulated in response to copper stress. Here, we show that, whileSynFtn does not interact directly with copper, it is highly unusual in several ways. First, its catalytic diiron ferroxidase center is unlike those of all other characterized prokaryotic ferritins and instead resembles an animal H-chain ferritin center. Second, as demonstrated by kinetic, spectroscopic, and high-resolution X-ray crystallographic data, reaction of O2with the di-Fe2+center results in a direct, one-electron oxidation to a mixed-valent Fe2+/Fe3+form. Iron–O2chemistry of this type is currently unknown among the growing family of proteins that bind a diiron site within a four α-helical bundle in general and ferritins in particular. The mixed-valent form, which slowly oxidized to the more usual di-Fe3+form, is an intermediate that is continually generated during mineralization. Peroxide, rather than superoxide, is shown to be the product of O2reduction, implying that ferroxidase centers function in pairs via long-range electron transfer through the protein resulting in reduction of O2bound at only one of the centers. We show that electron transfer is mediated by the transient formation of a radical on Tyr40, which lies ∼4 Å from the diiron center. As well as demonstrating an expansion of the iron–O2chemistry known to occur in nature, these data are also highly relevant to the question of whether all ferritins mineralize iron via a common mechanism, providing unequivocal proof that they do not.

     
    more » « less