skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultra-Red Galaxies Signpost Candidate Proto-Clusters at High Redshift
We present images obtained with LABOCA on the APEX telescope of a sample of 22 galaxies selected via their red Herschel SPIRE 250-, 350- and $$500\textrm{-}\mu\textrm{m}$$ colors. We aim to see if these luminous, rare and distant galaxies are signposting dense regions in the early Universe. Our $$870\textrm{-}\mu\textrm{m}$$ survey covers an area of $$\approx0.8\,\textrm{deg}^2$$ down to an average r.m.s. of $$3.9\,\textrm{mJy beam}^{-1}$$, with our five deepest maps going $$\approx2\times$$ deeper still. We catalog 86 DSFGs around our 'signposts', detected above a significance of $$3.5\sigma$$. This implies a $$100\pm30\%$$ over-density of $$S_{870}>8.5\,\textrm{mJy}$$ DSFGs, excluding our signposts, when comparing our number counts to those in 'blank fields'. Thus, we are $$99.93\%$$ confident that our signposts are pinpointing over-dense regions in the Universe, and $$\approx95\%$$ confident that these regions are over-dense by a factor of at least $$\ge1.5\times$$. Using template SEDs and SPIRE/LABOCA photometry we derive a median photometric redshift of $$z=3.2\pm0.2$$ for our signposts, with an interquartile range of $$z=2.8\textrm{-}3.6$$. We constrain the DSFGs likely responsible for this over-density to within $$|\Delta z|\le0.65$$ of their respective signposts. These 'associated' DSFGs are radially distributed within $$1.6\pm0.5\,\textrm{Mpc}$$ of their signposts, have median SFRs of $$\approx(1.0\pm0.2)\times10^3\,M_{\odot}\,\textrm{yr}^{-1}$$ (for a Salpeter stellar IMF) and median gas reservoirs of $$\sim1.7\times10^{11}\,M_{\odot}$$. These candidate proto-clusters have average total SFRs of at least $$\approx (2.3\pm0.5)\times10^3\,M_{\odot}\,\textrm{yr}^{-1}$$ and space densities of $$\sim9\times10^{-7}\,\textrm{Mpc}^{-3}$$, consistent with the idea that their constituents may evolve to become massive ETGs in the centers of the rich galaxy clusters we see today.  more » « less
Award ID(s):
1614213
PAR ID:
10058277
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
The Astrophysical journal
ISSN:
0004-637X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT In the local Universe, star formation is typically inefficient both globally and when considered as the fraction of gas converted into stars per local free-fall time. An important exception to this inefficiency is regions of high gravitational accelerations g, or equivalently surface densities $$\Sigma = g/(\pi \, G)$$, where stellar feedback is insufficient to overcome the self-gravity of dense gas clouds. In this paper, I explore whether dark matter can play an analogous role in providing the requisite accelerations on the scale of entire galaxies in the early cosmos. The key insight is that characteristic accelerations in dark matter haloes scale as $(1+z)^2$ at fixed halo mass. I show this is sufficient to make dark matter the source of intense accelerations that might induce efficient star formation on galactic scales at cosmic dawn in sufficiently massive haloes. The mass characterizing this regime scales as $$(1+z)^{-6}$$ and corresponds to a relatively constant comoving number density of $$n(>\!M_{\rm {vir}}) \approx 10^{-4}\, {\rm Mpc}^{-3}$$ at $$z \gtrsim 8$$. For somewhat rarer haloes, this model predicts stellar masses of $$M_{\star }\sim 10^{9}\, {\rm M}_{\odot }$$ can form in regions that end up with sizes $$\mathcal {O}(100\, {\rm pc})$$ over $$40\, {\rm Myr}$$ time-scales at $$z\approx 12-14$$; these numbers compare well to measurements for some of the brightest galaxies at that epoch from JWST observations. Dark matter and standard cosmological evolution may therefore be crucial for explaining the surprisingly high levels of star formation in the early Universe revealed by JWST. 
    more » « less
  2. ABSTRACT We present band 6 ALMA observations of a heavily obscured radio-loud (L1.4 GHz = 1025.4 W Hz−1) active galactic nucleus (AGN) candidate at zphot = 6.83 ± 0.06 found in the 1.5 deg2 COSMOS field. The ALMA data reveal detections of exceptionally strong [C ii]158 $$\mu$$m (z[C ii] = 6.8532) and underlying dust continuum emission from this object (COS-87259), where the [C ii] line luminosity, line width, and 158 $$\mu$$m continuum luminosity are comparable to those seen from z ∼ 7 sub-mm galaxies and quasar hosts. The 158 $$\mu$$m continuum detection suggests a total infrared luminosity of $$9\times 10^{12}\, \mathrm{ L}_\odot$$ with corresponding very large obscured star formation rate (1300 M⊙ yr−1) and dust mass ($$2\times 10^9\, \mathrm{ M}_\odot$$). The strong break seen between the VIRCam and IRAC photometry perhaps suggests that COS-87259 is an extremely massive reionization-era galaxy with $$M_\ast \approx 1.7\times 10^{11}\, \mathrm{ M}_\odot$$. Moreover, the MIPS, PACS, and SPIRE detections imply that this object harbours an AGN that is heavily obscured ($$\tau _{_{\mathrm{9.7\,\mu m}}}=2.3$$) with a bolometric luminosity of approximately $$5\times 10^{13}\, \mathrm{ L}_\odot$$. Such a very high AGN luminosity suggests that this object is powered by an ≈1.6 × 10$$^9\, \mathrm{ M}_\odot$$ black hole if accreting near the Eddington limit, and is effectively a highly obscured version of an extremely ultraviolet (UV)-luminous (M1450 ≈ −27.3) z ∼ 7 quasar. Notably, these z ∼ 7 quasars are an exceedingly rare population (∼0.001 deg−2), while COS-87259 was identified over a relatively small field. Future very wide area surveys with e.g. Roman and Euclid have the potential to identify many more extremely red yet UV-bright z ≳ 7 objects similar to COS-87259, providing richer insight into the occurrence of intense obscured star formation and supermassive black hole growth among this population. 
    more » « less
  3. We use a well-motivated galaxy formation framework to predict stellar masses, star formation rates (SFR), and ultraviolet (UV) luminosities of galaxy populations at redshifts $$z\in 5-16$$, taking into account stochasticity of SFR in a controlled manner. We demonstrate that the model can match observational estimates of UV luminosity functions (LFs) at $5<10$ with a modest level of SFR stochasticity, resulting in the scatter of absolute UV luminosity at a given halo mass of $$\sigma_{M_{\rm UV}}\approx 0.75$$. To match the observed UV LFs at $$z\approx 11-13$$ and $$z\approx 16$$ the SFR stochasticity should increase so that $$\sigma_{M_{\rm UV}}\approx 1-1.3$$ and $$\approx 2$$, respectively. Model galaxies at $$z\approx 11-13$$ have stellar masses and SFRs in good agreement with existing measurements. The median fraction of the baryon budget that was converted into stars, $$f_\star$$, is only $$f_\star\approx 0.005-0.05$$, but a small fraction of galaxies at $z=16$ have $$f_\star>1$$ indicating that SFR stochasticity cannot be higher. We discuss several testable consequences of the increased SFR stochasticity at $z>10$. The increase of SFR stochasticity with increasing $$z$$, for example, prevents steepening of UV LF and even results in some flattening of UV LF at $$z\gtrsim 13$$. The median stellar ages of model galaxies at $$z\approx 11-16$$ are predicted to decrease from $$\approx 20-30$$ Myr for $$M_{\rm UV}\gtrsim -21$$ galaxies to $$\approx 5-10$$ Myr for brighter ones. Likewise, the scatter in median stellar age is predicted to decrease with increasing luminosity. The scatter in the ratio of star formation rates averaged over 10 and 100 Myr should increase with redshift. Fluctuations of ionizing flux should increase at $z>10$ resulting in the increasing scatter in the line fluxes and their ratios for the lines sensitive to ionization parameter. 
    more » « less
  4. ABSTRACT The shape of the low-mass (faint) end of the galaxy stellar mass function (SMF) or ultraviolet luminosity function (UVLF) at $$z \gtrsim 6$$ is an open question for understanding which galaxies primarily drove cosmic reionization. Resolved photometry of Local Group low-mass galaxies allows us to reconstruct their star formation histories, stellar masses, and UV luminosities at early times, and this fossil record provides a powerful ‘near-far’ technique for studying the reionization-era SMF/UVLF, probing orders of magnitude lower in mass than direct HST/JWST observations. Using 882 low-mass ($$M_{\rm star}\lesssim 10^{9}\, \rm {M_\odot }$$) galaxies across 11 Milky Way (MW)- and Local Group-analogue environments from the FIRE-2 cosmological baryonic zoom-in simulations, we characterize their progenitors at $$z=6\!-\!9$$, the mergers/disruption of those progenitors over time, and how well their present-day fossil record traces the high-redshift SMF. A present-day galaxy with $$M_{\rm star}\sim 10^5\, \rm {M_\odot }$$ ($$\sim 10^9\, \rm {M_\odot }$$) had $$\approx 1$$ ($$\approx 30$$) progenitors at $$z\approx 7$$, and its main progenitor comprised $$\approx 100~{{\ \rm per\ cent}}$$ ($$\approx 10~{{\ \rm per\ cent}}$$) of the total stellar mass of all its progenitors at $$z\approx 7$$. We show that although only $$\sim 15~{{\ \rm per\ cent}}$$ of the early population of low-mass galaxies survives to present day, the fossil record of surviving Local Group galaxies accurately traces the low-mass slope of the SMF at $$z \sim 6 \!-\! 9$$. We find no obvious mass dependence to the mergers and accretion, and show that applying this reconstruction technique to just low-mass galaxies at $z = 0$ and not the MW/M31 hosts correctly recovers the slope of the SMF down to $$M_{\rm star} \sim 10^{4.5}\, \rm {{\rm M}_{\odot }}$$ at $$z \gtrsim 6$$. Thus, we validate the ‘near-far’ approach as an unbiased tool for probing low-mass reionization-era galaxies. 
    more » « less
  5. ABSTRACT Recent observations indicate that galactic outflows are ubiquitous in high-redshift (high-z) galaxies, including normal star-forming galaxies, quasar hosts, and dusty star-forming galaxies (DSFGs). However, the impact of outflows on the evolution of their hosts is still an open question. Here, we analyse the star-formation histories and galactic outflow properties of galaxies in massive haloes ($$10^{12}\, {\rm M}_{\odot }\ \lt\ M_{\rm vir}\ \lt\ 5\times 10^{12}\, {\rm M}_{\odot }$$) at z ≳ 5.5 in three zoom-in cosmological simulations from the MassiveFIRE suite, as part of the Feedback In Realistic Environments (FIRE) project. The simulations were run with the FIRE-2 model, which does not include feedback from active galactic nuclei. The simulated galaxies resemble z > 4 DSFGs, with star-formation rates of $$\sim\!{1000}\ {\rm M}_{\odot }\, \rm yr^{-1}$$ and molecular gas masses of Mmol ∼ 1010 M⊙. However, the simulated galaxies are characterized by higher circular velocities than those observed in high-z DSFGs. The mass loading factors from stellar feedback are of the order of ∼0.1, implying that stellar feedback is inefficient in driving galactic outflows and gas is consumed by star formation on much shorter time-scales than it is expelled from the interstellar medium. We also find that stellar feedback is highly inefficient in self-regulating star formation in this regime, with an average integrated star formation efficiency (SFE) per dynamical time of 30 per cent. Finally, compared with FIRE-2 galaxies hosted in similarly massive haloes at lower redshift, we find lower mass loading factors and higher SFEs in the high-z sample. We argue that both effects originate from the higher total and gas surface densities that characterize high-z massive systems. 
    more » « less