skip to main content

Title: Ultra-Red Galaxies Signpost Candidate Proto-Clusters at High Redshift
We present images obtained with LABOCA on the APEX telescope of a sample of 22 galaxies selected via their red Herschel SPIRE 250-, 350- and $500\textrm{-}\mu\textrm{m}$ colors. We aim to see if these luminous, rare and distant galaxies are signposting dense regions in the early Universe. Our $870\textrm{-}\mu\textrm{m}$ survey covers an area of $\approx0.8\,\textrm{deg}^2$ down to an average r.m.s. of $3.9\,\textrm{mJy beam}^{-1}$, with our five deepest maps going $\approx2\times$ deeper still. We catalog 86 DSFGs around our 'signposts', detected above a significance of $3.5\sigma$. This implies a $100\pm30\%$ over-density of $S_{870}>8.5\,\textrm{mJy}$ DSFGs, excluding our signposts, when comparing our number counts to those in 'blank fields'. Thus, we are $99.93\%$ confident that our signposts are pinpointing over-dense regions in the Universe, and $\approx95\%$ confident that these regions are over-dense by a factor of at least $\ge1.5\times$. Using template SEDs and SPIRE/LABOCA photometry we derive a median photometric redshift of $z=3.2\pm0.2$ for our signposts, with an interquartile range of $z=2.8\textrm{-}3.6$. We constrain the DSFGs likely responsible for this over-density to within $|\Delta z|\le0.65$ of their respective signposts. These 'associated' DSFGs are radially distributed within $1.6\pm0.5\,\textrm{Mpc}$ of their signposts, have median SFRs of $\approx(1.0\pm0.2)\times10^3\,M_{\odot}\,\textrm{yr}^{-1}$ (for a Salpeter stellar IMF) and median gas reservoirs more » of $\sim1.7\times10^{11}\,M_{\odot}$. These candidate proto-clusters have average total SFRs of at least $\approx (2.3\pm0.5)\times10^3\,M_{\odot}\,\textrm{yr}^{-1}$ and space densities of $\sim9\times10^{-7}\,\textrm{Mpc}^{-3}$, consistent with the idea that their constituents may evolve to become massive ETGs in the centers of the rich galaxy clusters we see today. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Award ID(s):
1614213
Publication Date:
NSF-PAR ID:
10058277
Journal Name:
The Astrophysical journal
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the serendipitous discovery of a dusty, starbursting galaxy at z=5.667 (called CRLE hereafter), in close physical association to the "normal" Main Sequence galaxy HZ10 at z=5.654. CRLE was identified by detection of [CII], [NII] and CO(2-1) line emission, making it the highest redshift, most luminous starburst in the COSMOS field. This massive, dusty galaxy appears to be forming stars at a rate of at least 1500$\,M_\odot$ yr$^{-1}$ in a compact region only ~3 kpc in diameter. The dynamical and dust emission properties of CRLE suggest an ongoing merger driving the starburst, in a potentially intermediate stage relative tomore »other known dusty galaxies at the same epoch. The ratio of [CII] to [NII] may suggest that an important contribution to the [CII] emission comes from a diffuse ionized gas component, which could be more extended than the dense, starbursting gas. CRLE appears to be located in a significant galaxy overdensity at the same redshift, potentially associated with a large scale cosmic structure recently identified in a Lyman Alpha Emitter survey. This overdensity suggests that CRLE and HZ10 reside in a protocluster environment, offering the tantalizing opportunity to study the effect of a massive starburst on protocluster star formation. Our findings support the interpretation that a significant fraction of the earliest galaxy formation may occur from the inside-out, within the central regions of the most massive halos, while rapidly evolving into the massive galaxy clusters observed in the local Universe.« less
  2. ABSTRACT

    We present SCUBA-2 850 $\mathrm{ \mu}$m observations of 13 candidate starbursting protoclusters selected using Planck and Herschel data. The cumulative number counts of the 850 $\mathrm{ \mu}$m sources in 9 of 13 of these candidate protoclusters show significant overdensities compared to the field, with the probability <10−2 assuming the sources are randomly distributed in the sky. Using the 250, 350, 500, and 850 $\mathrm{ \mu}$m flux densities, we estimate the photometric redshifts of individual SCUBA-2 sources by fitting spectral energy distribution templates with an MCMC method. The photometric redshift distribution, peaking at 2 < z < 3, is consistent with that ofmore »known z > 2 protoclusters and the peak of the cosmic star formation rate density (SFRD). We find that the 850 $\mathrm{ \mu}$m sources in our candidate protoclusters have infrared luminosities of $L_{\mathrm{IR}}\gtrsim 10^{12}\, \mathrm{L}_{\odot }$ and star formation rates of SFR  = (500–1500) M⊙ yr−1. By comparing with results in the literature considering only Herschel photometry, we conclude that our 13 candidate protoclusters can be categorized into four groups: six of them being high-redshift starbursting protoclusters, one being a lower redshift cluster or protocluster, three being protoclusters that contain lensed dusty star-forming galaxies or are rich in 850 $\mathrm{ \mu}$m sources, and three regions without significant Herschel or SCUBA-2 source overdensities. The total SFRs of the candidate protoclusters are found to be comparable or higher than those of known protoclusters, suggesting our sample contains some of the most extreme protocluster population. We infer that cross-matching Planck and Herschel data is a robust method for selecting candidate protoclusters with overdensities of 850 $\mathrm{ \mu}$m sources.

    « less
  3. ABSTRACT We present an extensive ALMA spectroscopic follow-up programme of the $z\, {=}\, 4.3$ structure SPT2349–56, one of the most actively star-forming protocluster cores known, to identify additional members using their [C ii] 158 μm and CO(4–3) lines. In addition to robustly detecting the 14 previously published galaxies in this structure, we identify a further 15 associated galaxies at $z\, {=}\, 4.3$, resolving 55$\, {\pm }\,$5 per cent of the 870 μm flux density at 0.5 arcsec resolution compared to 21 arcsec single-dish data. These galaxies are distributed into a central core containing 23 galaxies extending out to 300 kpc in diameter, and a northern extension, offset frommore »the core by 400 kpc, containing three galaxies. We discovered three additional galaxies in a red Herschel-SPIRE source 1.5 Mpc from the main structure, suggesting the existence of many other sources at the same redshift as SPT2349–56 that are not yet detected in the limited coverage of our data. An analysis of the velocity distribution of the central galaxies indicates that this region may be virialized with a mass of (9$\pm 5)\, {\times }\, 10^{12}$  M⊙, while the two offset galaxy groups are about 30 and 60 per cent less massive and show significant velocity offsets from the central group. We calculate the [C ii] and far-infrared number counts, and find evidence for a break in the [C ii] luminosity function. We estimate the average SFR density within the region of SPT2349–56 containing single-dish emission (a proper diameter of 720 kpc), assuming spherical symmetry, to be roughly 4$\, {\times }\, 10^4$ M⊙ yr−1 Mpc−3; this may be an order of magnitude greater than the most extreme examples seen in simulations.« less
  4. ABSTRACT We study the role of group infall in the assembly and dynamics of galaxy clusters in ΛCDM. We select 10 clusters with virial mass M200 ∼ 1014 $\rm M_\odot$ from the cosmological hydrodynamical simulation Illustris and follow their galaxies with stellar mass M⋆ ≥ 1.5 × 108 $\rm M_\odot$. A median of ${\sim}38{{\ \rm per\ cent}}$ of surviving galaxies at z = 0 is accreted as part of groups and did not infall directly from the field, albeit with significant cluster-to-cluster scatter. The evolution of these galaxy associations is quick, with observational signatures of their common origin eroding rapidly in 1–3 Gyr after infall. Substructuremore »plays a dominant role in fostering the conditions for galaxy mergers to happen, even within the cluster environment. Integrated over time, we identify (per cluster) an average of 17 ± 9 mergers that occur in infalling galaxy associations, of which 7 ± 3 occur well within the virial radius of their cluster hosts. The number of mergers shows large dispersion from cluster to cluster, with our most massive system having 42 mergers above our mass cut-off. These mergers, which are typically gas rich for dwarfs and a combination of gas rich and gas poor for M⋆ ∼ 1011 $\rm M_\odot$, may contribute significantly within ΛCDM to the formation of specific morphologies, such as lenticulars (S0) and blue compact dwarfs in groups and clusters.« less
  5. ABSTRACT We present results of MUSE-ALMA haloes, an ongoing study of the circumgalactic medium (CGM) of galaxies (z ≤ 1.4). Using multiphase observations we probe the neutral, ionized, and molecular gas in a subsample containing six absorbers and nine associated galaxies in the redshift range z ∼ 0.3–0.75. Here, we give an in-depth analysis of the newly CO-detected galaxy Q2131−G1 (z = 0.42974), while providing stringent mass and depletion time limits for the non-detected galaxies. Q2131−G1 is associated with an absorber with column densities of log(NH i/cm−2) ∼ 19.5 and $\textrm {log}(N_{\textrm {H}_2}/\textrm {cm}^{-2}) \sim 16.5$, and has a star formationmore »rate of SFR = 2.00 ± 0.20 M⊙yr−1, a dark matter fraction of fDM(r1/2) = 0.24–0.54, and a molecular gas mass of $M_\textrm {mol} = 3.52 ^{+3.95}_{-0.31} \times 10^9 \,\, \textrm {M}_{\odot }$ resulting in a depletion time of τdep < 4.15 Gyr. Kinematic modelling of both the CO (3–2) and [O iii] λ5008 emission lines of Q2131−G1 shows that the molecular and ionized gas phases are well aligned directionally and that the maximum rotation velocities closely match. These two gas phases within the disc are strongly coupled. The metallicity, kinematics, and orientation of the atomic and molecular gas traced by a two-component absorption feature are consistent with being part of the extended rotating disc with a well-separated additional component associated with infalling gas. Compared to emission-selected samples, we find that H i-selected galaxies have high molecular gas masses given their low star formation rate. We consequently derive high depletion times for these objects.« less