Millimeter wave (mmWave) technology is gaining momentum because of its ability to provide high data rates. However, in addition to other challenges in the operation of mmWave systems, developing cell search algorithms is a challenge due to high path loss, directional transmission, and excessive sensitivity to blockage at mmWave frequencies. Thus, the cell search schemes of long term evolution (LTE) cannot be used with mmWave networks. Exhaustive and iterative search algorithms have been proposed in literature for carrying out cell search in mmWave systems. The exhaustive search offers high probability of detection with high discovery delay while the iterative approach offers low probability of detection with low discovery delay. In this paper, we propose a hybrid algorithm that combines the strengths of exhaustive and iterative methods. We compare the three algorithms in terms of misdetection probability and discovery delay and show that hybrid search is a smarter algorithm that achieves a desired balance between probability of detection performance and discovery delay.
more »
« less
Quick Discovery of Mobile Devices in Many-User Regime - Carrier Sensing or Simultaneous Detection?
We consider the problem of detecting the active wireless stations among a very large population. This problem is highly relevant in applications involving passive and active RFID tags and dense IoT settings. The state of the art mainly utilizes interference avoiding (e.g., CSMA-based) approaches with the objective of identifying one station at a time. We first derive basic limits of the achievable delay with interference avoiding paradigm. Then, we consider the setting in which each station is assigned a signature sequence, picked at random from a specific alphabet and active stations transmit their signatures simultaneously upon activation. The challenge at the detector is to detect all active stations from the combined signature signal with low probability of misdetection and false positives. We show that, such an interference embracing approach can substantially reduce the detection delay, at an arbitrarily low probability of both types of detection errors, as the number of stations scale. We show that, under a randomized activation model the collision embracing detection scheme achieves Theta(log^2(n)/log(log(n))) delay while the expected delay of existing CSMA schemes are Omega(log^2(n)) for a population of n stations. Finally, we discuss large-scale implementation issues such as the design of low-complexity detection schemes and present numerical investigations.
more »
« less
- Award ID(s):
- 1719371
- PAR ID:
- 10058415
- Date Published:
- Journal Name:
- IEEE WiOpt
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The lack of authentication protection for bootstrapping messages broadcast by base-stations makes impossible for devices to differentiate between a legitimate and a fake base-station. This vulnerability has been widely acknowledged, but not yet fixed and thus enables law-enforcement agencies, motivated adversaries, and nation-states to carry out attacks against targeted users. Although 5G cellular protocols have been enhanced to prevent some of these attacks, the root vulnerability for fake base-stations still exists. In this paper, we propose an efficient broadcast authentication protocol based on a hierarchical identity-based signature scheme, Schnorr-HIBS, which addresses the root cause of the fake base-station problem with minimal computation and communication overhead. We implement and evaluate our proposed protocol using off-the-shelf software-defined radios and open-source libraries. We also provide a comprehensive quantitative and qualitative comparison between our scheme and other candidate solutions for 5G base-station authentication proposed by 3GPP. Our proposed protocol achieves at least a 6x speedup in terms of end-to-end cryptographic delay and a communication cost reduction of 31% over other 3GPP proposals.more » « less
-
Abstract In this paper, we consider the problem of noiseless non-adaptive probabilistic group testing, in which the goal is high-probability recovery of the defective set. We show that in the case of $$n$$ items among which $$k$$ are defective, the smallest possible number of tests equals $$\min \{ C_{k,n} k \log n, n\}$$ up to lower-order asymptotic terms, where $$C_{k,n}$$ is a uniformly bounded constant (varying depending on the scaling of $$k$$ with respect to $$n$$) with a simple explicit expression. The algorithmic upper bound follows from a minor adaptation of an existing analysis of the Definite Defectives algorithm, and the algorithm-independent lower bound builds on existing works for the regimes $$k \le n^{1-\varOmega (1)}$$ and $$k = \varTheta (n)$$. In sufficiently sparse regimes (including $$k = o\big ( \frac{n}{\log n} \big )$$), our main result generalizes that of Coja-Oghlan et al. (2020) by avoiding the assumption $$k \le n^{1-\varOmega (1)}$$, whereas in sufficiently dense regimes (including $$k = \omega \big ( \frac{n}{\log n} \big )$$), our main result shows that individual testing is asymptotically optimal for any non-zero target success probability, thus strengthening an existing result of Aldridge (2019, IEEE Trans. Inf. Theory, 65, 2058–2061) in terms of both the error probability and the assumed scaling of $$k$$.more » « less
-
This article considers the massive MIMO unsourced random access problem on a quasi-static Rayleigh fading channel. Given a fixed message length and a prescribed number of channel uses, the objective is to construct a coding scheme that minimizes the energy-per-bit subject to a fixed probability of error. The proposed scheme differs from other state-of-the-art schemes in that it blends activity detection, single-user coding, pilot-aided and temporary decisions-aided iterative channel estimation and decoding, minimum-mean squared error (MMSE) estimation, and successive interference cancellation (SIC). We show that an appropriate combination of these ideas can substantially outperform state-of-the-art coding schemes when the number of active users is more than 100, making this the best performing scheme known for this regime.more » « less
-
Consider a (multiple-access) wireless communication system where users are connected to a unique base station over a shared-spectrum radio links. Each user has a fixed number k of bits to send to the base station, and his signal gets attenuated by a random channel gain (quasi-static fading). In this paper we consider the many-user asymptotics of Chen-Chen-Guo’2017, where the number of users grows linearly with the blocklength. In addition, we adopt a per-user probability of error criterion of Polyanskiy’2017 (as opposed to classical joint-error probability criterion). Under these two settings we derive bounds on the optimal required energy-perbit for reliable multi-access communication. We confirm the curious behaviour (previously observed for non-fading MAC) of the possibility of perfect multi-user interference cancellation for user densities below a critical threshold. Further we demonstrate the suboptimality of standard solutions such as orthogonalization (i.e., TDMA/FDMA) and treating interference as noise (i.e. pseudo-random CDMA without multi-user detection).more » « less
An official website of the United States government

