skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Updating Probability: Tracking Statistics as Criterion
For changing opinion, represented by an assignment of probabilities to propositions, the criterion proposed is motivated by the requirement that the assignment should have, and maintain, the possibility of matching in some appropriate sense statistical proportions in a population. This ‘tracking’ criterion implies limitations on policies for updating in response to a wide range of types of new input. Satisfying the criterion is shown equiva- lent to the principle that the prior must be a convex combination of the possible poster- iors. Furthermore, this is equivalent to the requirement that prior expected values must fall inside the range spanned by possible posterior expected values. The tracking criterion is liberal; it allows for, but does not require, a policy such as Bayesian conditionalization, and can be offered as a general constraint on policies for managing opinion over time. Examples are given of non-Bayesian policies, both ones that satisfy and ones that violate the criterion.  more » « less
Award ID(s):
1718108
PAR ID:
10059133
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The British Journal for the Philosophy of Science
ISSN:
0007-0882
Page Range / eLocation ID:
axv027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optimizing risk-averse objectives in discounted MDPs is challenging because most models do not admit direct dynamic programming equations and require complex history-dependent policies. In this paper, we show that the risk-averse total reward criterion, under the Entropic Risk Measure (ERM) and Entropic Value at Risk (EVaR) risk measures, can be optimized by a stationary policy, making it simple to analyze, interpret, and deploy. We propose exponential value iteration, policy iteration, and linear programming to compute optimal policies. Compared with prior work, our results only require the relatively mild condition of transient MDPs and allow for both positive and negative rewards. Our results indicate that the total reward criterion may be preferable to the discounted criterion in a broad range of risk-averse reinforcement learning domains. 
    more » « less
  2. In many multiobject tracking applications, including radar and sonar tracking, after prefiltering the received signal, measurement data is typically structured in cells. The cells, e.g., represent different range and bearing values. However, conventional multiobject tracking methods use so-called point measurements. Point measurements are provided by a preprocessing stage that applies a threshold or detector and breaks up the cell’s structure by converting cell indexes into, e.g., range and bearing measurements. We here propose a Bayesian multiobject tracking method that processes measurements that have been thresholded but are still cell-structured. We first derive a likelihood function that systematically incorporates an adjustable detection threshold which makes it possible to control the number of cell measurements. We then propose a Poisson Multi-Bernoulli (PMB) filter based on the likelihood function for cell measurements. Furthermore, we establish a link to the conventional point measurement model by deriving the likelihood function for point measurements with amplitude information (AM) and discuss the PMB filter that uses point measurements with AM. Our numerical results demonstrate the advantages of the proposed PMB filter for thresholded cell measurements compared to the conventional PMB filter for point measurements with and without AM. 
    more » « less
  3. Understanding and assessing child verbal communication patterns is critical in facilitating effective language development. Typically speaker diarization is performed to explore children’s verbal engagement. Understanding which activity areas stimulate verbal communication can help promote more efficient language development. In this study, we present a two stage children vocal engagement prediction system that consists of (1) a near to real-time, noise robust system that measures the duration of child-to-adult and child-to-child conversations, and tracks the number of conversational turn-takings, (2) a novel child location tracking strategy, that determines in which activity areas a child spends most/least of their time. A proposed child–adult turn-taking solution relies exclusively on vocal cues observed during the interaction between a child and other children, and/or classroom teachers. By employing a threshold optimized speech activity detection using a linear combination of voicing measures, it is possible to achieve effective speech/non-speech segment detection prior to conversion assessment. This TO-COMBO-SAD reduces classification error rates for adult-child audio by 21.34% and 27.3% compared to a baseline i-Vector and standard Bayesian Information Criterion diarization systems, respectively. In addition, this study presents a unique location tracking system adult-child that helps determine the quantity of child–adult communication in specific activity areas, and which activities stimulate voice communication engagement in a child–adult education space. We observe that our proposed location tracking solution offers unique opportunities to assess speech and language interaction for children, and quantify the location context which would contribute to improve verbal communication. 
    more » « less
  4. Abstract We propose a Bayesian model selection approach for generalized linear mixed models (GLMMs). We consider covariance structures for the random effects that are widely used in areas such as longitudinal studies, genome-wide association studies, and spatial statistics. Since the random effects cannot be integrated out of GLMMs analytically, we approximate the integrated likelihood function using a pseudo-likelihood approach. Our Bayesian approach assumes a flat prior for the fixed effects and includes both approximate reference prior and half-Cauchy prior choices for the variances of random effects. Since the flat prior on the fixed effects is improper, we develop a fractional Bayes factor approach to obtain posterior probabilities of the several competing models. Simulation studies with Poisson GLMMs with spatial random effects and overdispersion random effects show that our approach performs favorably when compared to widely used competing Bayesian methods including deviance information criterion and Watanabe–Akaike information criterion. We illustrate the usefulness and flexibility of our approach with three case studies including a Poisson longitudinal model, a Poisson spatial model, and a logistic mixed model. Our proposed approach is implemented in the R package GLMMselect that is available on CRAN. 
    more » « less
  5. Abstract Bayesian data analysis is increasingly used in ecology, but prior specification remains focused on choosing non‐informative priors (e.g., flat or vague priors). One barrier to choosing more informative priors is that priors must be specified on model parameters (e.g., intercepts, slopes, and sigmas), but prior knowledge often exists on the level of the response variable. This is particularly true for common models in ecology, like generalized linear mixed models that have a link function and potentially dozens of parameters, each of which needs a prior distribution. We suggest that this difficulty can be overcome by simulating from the prior predictive distribution and visualizing the results on the scale of the response variable. In doing so, some common choices for non‐informative priors on parameters can easily be seen to produce biologically impossible values of response variables. Such implications of prior choices are difficult to foresee without visualization. We demonstrate a workflow for prior selection using simulation and visualization with two ecological examples (predator–prey body sizes and spider responses to food competition). This approach is not new, but its adoption by ecologists will help to better incorporate prior information in ecological models, thereby maximizing one of the benefits of Bayesian data analysis. 
    more » « less