skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neutrino Pair Cerenkov Radiation for Tachyonic Neutrinos
The emission of a charged light lepton pair by a superluminal neutrino has been identified as a major factor in the energy loss of highly energetic neutrinos. The observation of PeV neutrinos by IceCube implies their stability against lepton pair Cerenkov radiation. Under the assumption of a Lorentz-violating dispersion relation for highly energetic superluminal neutrinos, one may thus constrain the Lorentz-violating parameters. A kinematically different situation arises when one assumes a Lorentz-covariant, space-like dispersion relation for hypothetical tachyonic neutrinos, as an alternative to Lorentz-violating theories. We here discuss a hitherto neglected decay process, where a highly energetic tachyonic neutrino may emit other (space-like, tachyonic) neutrino pairs. We find that the space-like dispersion relation implies the absence of a q 2 threshold for the production of a tachyonic neutrino-antineutrino pair, thus leading to the dominant additional energy loss mechanism for an oncoming tachyonic neutrino in the medium-energy domain. Surprisingly, the small absolute values of the decay rate and energy loss rate in the tachyonic model imply that these models, in contrast to the Lorentz-violating theories, are not pressured by the cosmic PeV neutrinos registered by the IceCube collaboration.  more » « less
Award ID(s):
1710856
PAR ID:
10059196
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Advances in High Energy Physics
Volume:
2017
ISSN:
1687-7357
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The hypothesis of Lorentz violation in the neutrino sector has intrigued scientists for the last two to three decades. A number of theoretical arguments support the emergence of such violations, first and foremost for neutrinos, which constitute the “most elusive” and “least interacting” particles known to mankind. It is of obvious interest to place stringent bounds on the Lorentz-violating parameters in the neutrino sector. In the past, the most stringent bounds have been placed by calculating the probability of neutrino decay into a lepton pair, a process made kinematically feasible by Lorentz violation in the neutrino sector, above a certain threshold. However, even more stringent bounds can be placed on the Lorentz-violating parameters if one takes into account, additionally, the possibility of neutrino splitting, i.e., of neutrino decay into a neutrino of lower energy, accompanied by “neutrino-pair Čerenkov radiation.” This process has a negligible threshold and can be used to improve the bounds on Lorentz-violating parameters in the neutrino sector. Finally, we take the opportunity to discuss the relation of Lorentz and gauge symmetry breaking, with a special emphasis on the theoretical models employed in our calculations. 
    more » « less
  2. Conceivable Lorentz-violating effects in the neutrino sector remain a research area of great general interest, as they touch upon the very foundations on which the Standard Model and our general understanding of fundamental interactions are laid. Here, we investigate the relation of Lorentz violation in the neutrino sector in light of the fact that neutrinos and the corresponding left-handed charged leptons form [Formula: see text] doublets under the electroweak gauge group. Lorentz-violating effects thus cannot be fully separated from questions related to gauge invariance. The model dependence of the effective interaction Lagrangians used in various recent investigations is explored with a special emphasis on neutrino splitting, otherwise known as the neutrino-pair Cerenkov radiation and vacuum-pair emission (electron–positron-pair Cerenkov radiation). We highlight two scenarios in which Lorentz-violating effects do not necessarily also break electroweak gauge invariance. The first of these involves a restricted set of gauge transformations, a subgroup of [Formula: see text], while in the second where differential Lorentz violation is exclusively introduced by the mixing of the neutrino flavor and mass eigenstates. Our study culminates in a model which fully preserves [Formula: see text] gauge invariance, involves flavor-dependent Lorentz-breaking parameters, and still allows for Cerenkov-type decays to proceed. 
    more » « less
  3. Abstract The majority of astrophysical neutrinos have undetermined origins. The IceCube Neutrino Observatory has observed astrophysical neutrinos but has not yet identified their sources. Blazars are promising source candidates, but previous searches for neutrino emission from populations of blazars detected in ≳GeV gamma rays have not observed any significant neutrino excess. Recent findings in multimessenger astronomy indicate that high-energy photons, coproduced with high-energy neutrinos, are likely to be absorbed and reemitted at lower energies. Thus, lower-energy photons may be better indicators of TeV–PeV neutrino production. This paper presents the first time-integrated stacking search for astrophysical neutrino emission from MeV-detected blazars in the first Fermi Large Area Telescope low energy (1FLE) catalog using ten years of IceCube muon–neutrino data. The results of this analysis are found to be consistent with a background-only hypothesis. Assuming an E −2 neutrino spectrum and proportionality between the blazars MeV gamma-ray fluxes and TeV–PeV neutrino flux, the upper limit on the 1FLE blazar energy-scaled neutrino flux is determined to be 1.64 × 10 −12 TeV cm −2 s −1 at 90% confidence level. This upper limit is approximately 1% of IceCube’s diffuse muon–neutrino flux measurement. 
    more » « less
  4. The IceCube Neutrino Observatory opened the window on high-energy neutrino astronomy by confirming the existence of PeV astrophysical neutrinos and identifying the first compelling astrophysical neutrino source in the blazar TXS0506+056. Planning is underway to build an enlarged detector, IceCube-Gen2, which will extend measurements to higher energies, increase the rate of observed cosmic neutrinos and provide improved prospects for detecting fainter sources. IceCube-Gen2 is planned to have an extended in-ice optical array, a radio array at shallower depths for detecting ultra-high-energy (>100 PeV) neutrinos, and a surface component studying cosmic rays. In this contribution, we will discuss the simulation of the in-ice optical component of the baseline design of the IceCube-Gen2 detector, which foresees the deployment of an additional ~120 new detection strings to the existing 86 in IceCube over ~7 Antarctic summer seasons. Motivated by the phased construction plan for IceCube-Gen2, we discuss how the reconstruction capabilities and sensitivities of the instrument are expected to progress throughout its deployment. 
    more » « less
  5. Abstract High-energy tau neutrinos are rarely produced in atmospheric cosmic-ray showers or at cosmic particle accelerators, but are expected to emerge during neutrino propagation over cosmic distances due to flavor mixing. When high energy tau neutrinos interact inside the IceCube detector, two spatially separated energy depositions may be resolved, the first from the charged current interaction and the second from the tau lepton decay. We report a novel analysis of 7.5 years of IceCube data that identifies two candidate tau neutrinos among the 60 “High-Energy Starting Events” (HESE) collected during that period. The HESE sample offers high purity, all-sky sensitivity, and distinct observational signatures for each neutrino flavor, enabling a new measurement of the flavor composition. The measured astrophysical neutrino flavor composition is consistent with expectations, and an astrophysical tau neutrino flux is indicated at 2.8$$\sigma $$ σ significance. 
    more » « less