skip to main content

This content will become publicly available on March 18, 2023

Title: Simulation and sensitivities for a phased IceCube-Gen2 deployment
The IceCube Neutrino Observatory opened the window on high-energy neutrino astronomy by confirming the existence of PeV astrophysical neutrinos and identifying the first compelling astrophysical neutrino source in the blazar TXS0506+056. Planning is underway to build an enlarged detector, IceCube-Gen2, which will extend measurements to higher energies, increase the rate of observed cosmic neutrinos and provide improved prospects for detecting fainter sources. IceCube-Gen2 is planned to have an extended in-ice optical array, a radio array at shallower depths for detecting ultra-high-energy (>100 PeV) neutrinos, and a surface component studying cosmic rays. In this contribution, we will discuss the simulation of the in-ice optical component of the baseline design of the IceCube-Gen2 detector, which foresees the deployment of an additional ~120 new detection strings to the existing 86 in IceCube over ~7 Antarctic summer seasons. Motivated by the phased construction plan for IceCube-Gen2, we discuss how the reconstruction capabilities and sensitivities of the instrument are expected to progress throughout its deployment.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1903885 1913607
Publication Date:
NSF-PAR ID:
10339425
Journal Name:
37th International Cosmic Ray Conference (ICRC2021)
Volume:
395
Page Range or eLocation-ID:
1186
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The IceCube Neutrino Observatory opened the window on neutrino astronomy by discovering high-energy astrophysical neutrinos in 2013 and identifying the first compelling astrophysical neutrino source, the blazar TXS0506 + 056, in 2017. In this proceeding, we will discuss the science reach and ongoing development of the IceCube-Gen2 facility, which is the planned extension to IceCube. IceCube-Gen2 will increase the rate of observed cosmic neutrinos by an order of magnitude, be able to detect five-times fainter neutrino sources, and extend the measurement of astrophysical neutrinos several orders of magnitude higher in energy. We will discuss the envisioned design of the instrument,more »which will include an enlarged in-ice optical array, a surface array for the study of cosmic-rays, and a shallow radio array to detect ultra-high energy (>100 PeV) neutrinos. We will also highlight ongoing efforts to develop and test new instrumentation for IceCube-Gen2.« less
  2. The IceCube Neutrino Observatory at the South Pole has measured the diffuse astrophysical neutrino flux up to ~PeV energies and is starting to identify first point source candidates. The next generation facility, IceCube-Gen2, aims at extending the accessible energy range to EeV in order to measure the continuation of the astrophysical spectrum, to identify neutrino sources, and to search for a cosmogenic neutrino flux. As part of IceCube-Gen2, a radio array is foreseen that is sensitive to detect Askaryan emission of neutrinos beyond ~30 PeV. Surface and deep antenna stations have different benefits in terms of effective area, resolution, andmore »the capability to reject backgrounds from cosmic-ray air showers and may be combined to reach the best sensitivity. The optimal detector configuration is still to be identified. This contribution presents the full-array simulation efforts for a combination of deep and surface antennas, and compares different design options with respect to their sensitivity to fulfill the science goals of IceCube-Gen2.« less
  3. Abstract Since summer 2021, the Radio Neutrino Observatory in Greenland (RNO-G) is searching for astrophysical neutrinos at energies $${>10}$$ > 10  PeV by detecting the radio emission from particle showers in the ice around Summit Station, Greenland. We present an extensive simulation study that shows how RNO-G will be able to measure the energy of such particle cascades, which will in turn be used to estimate the energy of the incoming neutrino that caused them. The location of the neutrino interaction is determined using the differences in arrival times between channels and the electric field of the radio signal ismore »reconstructed using a novel approach based on Information Field Theory. Based on these properties, the shower energy can be estimated. We show that this method can achieve an uncertainty of 13% on the logarithm of the shower energy after modest quality cuts and estimate how this can constrain the energy of the neutrino. The method presented in this paper is applicable to all similar radio neutrino detectors, such as the proposed radio array of IceCube-Gen2.« less
  4. null (Ed.)
    The IceCube Neutrino Observatory is a multi-component detector at the South Pole which detects high-energy particles emerging from astrophysical events. These particles provide us with insights into the fundamental properties and behaviour of their sources. Besides its principal usage and merits in neutrino astronomy, using IceCube in conjunction with its surface array, IceTop, also makes it a unique three-dimensional cosmic-ray detector. This distinctive feature helps facilitate detailed cosmic-ray analysis in the transition region from galactic to extragalactic sources. We will present the progress made on multiple fronts to establish a framework for mass-estimation of primary cosmic rays. The first techniquemore »relies on a likelihood-based analysis of the surface signal distribution and improves upon the standard reconstruction technique. The second uses advanced methods in graph neural networks to use the full in-ice shower footprint, in addition to global shower-footprint features from IceTop. A comparison between the two methods for composition analysis as well as a possible extension of the analysis techniques for sub-PeV cosmic-ray air-showers will also be discussed.« less
  5. Abstract On July 30th, 2019 IceCube detected a high-energy astrophysical muon neutrino candidate, IC-190730A with a 67% probability of astrophysical origin. The flat spectrum radio quasar (FSRQ) PKS 1502 +106 is in the error circle of the neutrino. Motivated by this observation, we study PKS 1502+106 as a possible source of IC-190730A. PKS 1502+106 was in a quiet state in terms of UV/optical/X-ray/γ-ray flux at the time of the neutrino alert, we therefore model the expected neutrino emission from the source during its average long-term state, and investigate whether the emission of IC-190730A as a result of the quiet long-termmore »emission of PKS 1502+106 is plausible. We analyse UV/optical and X-ray data and collect additional observations from the literature to construct the multi-wavelength spectral energy distribution of PKS 1502+106. We perform leptohadronic modelling of the multi-wavelength emission of the source and determine the most plausible emission scenarios and the maximum expected accompanying neutrino flux. A model in which the multi-wavelength emission of PKS 1502+106 originates beyond the broad-line region and inside the dust torus is most consistent with the observations. In this scenario, PKS 1502+106 can have produced up to of order one muon neutrino with energy exceeding 100 TeV in the lifetime of IceCube. An appealing feature of this model is that the required proton luminosity is consistent with the average required proton luminosity if blazars power the observed ultra-high-energy-cosmic-ray flux and well below the source's Eddington luminosity. If such a model is ubiquitous among FSRQs, additional neutrinos can be expected from other bright sources with energy ≳ 10 PeV.« less