skip to main content


Title: Lorentz breaking and SU(2)L × U(1)Y gauge invariance for neutrinos
Conceivable Lorentz-violating effects in the neutrino sector remain a research area of great general interest, as they touch upon the very foundations on which the Standard Model and our general understanding of fundamental interactions are laid. Here, we investigate the relation of Lorentz violation in the neutrino sector in light of the fact that neutrinos and the corresponding left-handed charged leptons form [Formula: see text] doublets under the electroweak gauge group. Lorentz-violating effects thus cannot be fully separated from questions related to gauge invariance. The model dependence of the effective interaction Lagrangians used in various recent investigations is explored with a special emphasis on neutrino splitting, otherwise known as the neutrino-pair Cerenkov radiation and vacuum-pair emission (electron–positron-pair Cerenkov radiation). We highlight two scenarios in which Lorentz-violating effects do not necessarily also break electroweak gauge invariance. The first of these involves a restricted set of gauge transformations, a subgroup of [Formula: see text], while in the second where differential Lorentz violation is exclusively introduced by the mixing of the neutrino flavor and mass eigenstates. Our study culminates in a model which fully preserves [Formula: see text] gauge invariance, involves flavor-dependent Lorentz-breaking parameters, and still allows for Cerenkov-type decays to proceed.  more » « less
Award ID(s):
1710856
NSF-PAR ID:
10162254
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Journal of Modern Physics E
Volume:
28
Issue:
09
ISSN:
0218-3013
Page Range / eLocation ID:
1950072
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The hypothesis of Lorentz violation in the neutrino sector has intrigued scientists for the last two to three decades. A number of theoretical arguments support the emergence of such violations, first and foremost for neutrinos, which constitute the “most elusive” and “least interacting” particles known to mankind. It is of obvious interest to place stringent bounds on the Lorentz-violating parameters in the neutrino sector. In the past, the most stringent bounds have been placed by calculating the probability of neutrino decay into a lepton pair, a process made kinematically feasible by Lorentz violation in the neutrino sector, above a certain threshold. However, even more stringent bounds can be placed on the Lorentz-violating parameters if one takes into account, additionally, the possibility of neutrino splitting, i.e., of neutrino decay into a neutrino of lower energy, accompanied by “neutrino-pair Čerenkov radiation.” This process has a negligible threshold and can be used to improve the bounds on Lorentz-violating parameters in the neutrino sector. Finally, we take the opportunity to discuss the relation of Lorentz and gauge symmetry breaking, with a special emphasis on the theoretical models employed in our calculations. 
    more » « less
  2. The emission of a charged light lepton pair by a superluminal neutrino has been identified as a major factor in the energy loss of highly energetic neutrinos. The observation of PeV neutrinos by IceCube implies their stability against lepton pair Cerenkov radiation. Under the assumption of a Lorentz-violating dispersion relation for highly energetic superluminal neutrinos, one may thus constrain the Lorentz-violating parameters. A kinematically different situation arises when one assumes a Lorentz-covariant, space-like dispersion relation for hypothetical tachyonic neutrinos, as an alternative to Lorentz-violating theories. We here discuss a hitherto neglected decay process, where a highly energetic tachyonic neutrino may emit other (space-like, tachyonic) neutrino pairs. We find that the space-like dispersion relation implies the absence of a q 2 threshold for the production of a tachyonic neutrino-antineutrino pair, thus leading to the dominant additional energy loss mechanism for an oncoming tachyonic neutrino in the medium-energy domain. Surprisingly, the small absolute values of the decay rate and energy loss rate in the tachyonic model imply that these models, in contrast to the Lorentz-violating theories, are not pressured by the cosmic PeV neutrinos registered by the IceCube collaboration. 
    more » « less
  3. A bstract In the electroweak sector of the Standard Model, CP violation arises through a very particular interplay between the three quark generations, as described by the Cabibbo-Kobayashi-Maskawa (CKM) mechanism and the single Jarlskog invariant J 4 . Once generalized to the Standard Model Effective Field Theory (SMEFT), this peculiar pattern gets modified by higher-dimensional operators, whose associated Wilson coefficients are usually split into CP-even and odd parts. However, CP violation at dimension four, i.e., at the lowest order in the EFT expansion, blurs this distinction: any Wilson coefficient can interfere with J 4 and mediate CP violation. In this paper, we study such interferences at first order in the SMEFT expansion, 𝒪(1 / Λ 2 ), and we capture their associated parameter space via a set of 1551 linear CP-odd flavor invariants. This construction describes both new, genuinely CP-violating quantities as well as the interference between J 4 and CP-conserving ones. We call this latter possibility opportunistic CP violation . Relying on an appropriate extension of the matrix rank to Taylor expansions, which we dub Taylor rank , we define a procedure to organize the invariants in terms of their magnitude, so as to retain only the relevant ones at a given precision. We explore how this characterization changes when different assumptions are made on the flavor structure of the SMEFT coefficients. Interestingly, some of the CP-odd invariants turn out to be less suppressed than J 4 , even when they capture opportunistic CPV, demonstrating that CP-violation in the SM, at dimension 4, is accidentally small. 
    more » « less
  4. null (Ed.)
    Abstract The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach. 
    more » « less
  5. Ultra-high-energy (UHE) photons are an important tool for studying the high-energy Universe. A plausible source of photons with exa-eV (EeV) energy is provided by UHE cosmic rays (UHECRs) undergoing the Greisen–Zatsepin–Kuzmin process (Greisen 1966; Zatsepin & Kuzmin 1966) or pair production process (Blumenthal 1970) on a cosmic background radiation. In this context, the EeV photons can be a probe of both UHECR mass composition and the distribution of their sources (Gelmini, Kalashev & Semikoz 2008; Hooper, Taylor & Sarkar 2011). At the same time, the possible flux of photons produced by UHE protons in the vicinity of their sources by pion photoproduction or inelastic nuclear collisions would be noticeable only for relatively near sources, as the attenuation length of UHE photons is smaller than that of UHE protons; see, for example, Bhattacharjee & Sigl (2000) for a review. There also exists a class of so-called top-down models of UHECR generation that efficiently produce the UHE photons, for instance by the decay of heavy dark-matter particles (Berezinsky, Kachelriess & Vilenkin 1997; Kuzmin & Rubakov 1998) or by the radiation from cosmic strings (Berezinsky, Blasi & Vilenkin 1998). The search for the UHE photons was shown to be the most sensitive method of indirect detection of heavy dark matter (Kalashev & Kuznetsov 2016, 2017; Kuznetsov 2017; Kachelriess, Kalashev & Kuznetsov 2018; Alcantara, Anchordoqui & Soriano 2019). Another fundamental physics scenario that could be tested with UHE photons (Fairbairn, Rashba & Troitsky 2011) is the photon mixing with axion-like particles (Raffelt & Stodolsky 1988), which could be responsible for the correlation of UHECR events with BL Lac type objects observed by the High Resolution Fly’s Eye (HiRes) experiment (Gorbunov et al. 2004; Abbasi et al. 2006). In most of these scenarios, a clustering of photon arrival directions, rather than diffuse distribution, is expected, so point-source searches can be a suitable test for photon - axion-like particle mixing models. Finally, UHE photons could also be used as a probe for the models of Lorentz-invariance violation (Coleman & Glashow 1999; Galaverni & Sigl 2008; Maccione, Liberati & Sigl 2010; Rubtsov, Satunin & Sibiryakov 2012, 2014). The Telescope Array (TA; Tokuno et al. 2012; Abu-Zayyad et al. 2013c) is the largest cosmic ray experiment in the Northern Hemisphere. It is located at 39.3° N, 112.9° W in Utah, USA. The observatory includes a surface detector array (SD) and 38 fluorescence telescopes grouped into three stations. The SD consists of 507 stations that contain plastic scintillators, each with an area of 3 m2 (SD stations). The stations are placed in the square grid with 1.2 km spacing and cover an area of ∼700 km2. The TA SD is capable of detecting extensive air showers (EASs) in the atmosphere caused by cosmic particles of EeV and higher energies. The TA SD has been operating since 2008 May. A hadron-induced EAS significantly differs from an EAS induced by a photon because the depth of the shower maximum Xmax for a photon shower is larger, and a photon shower contains fewer muons and has a more curved front (see Risse & Homola 2007 for a review). The TA SD stations are sensitive to both muon and electromagnetic components of the shower and therefore can be triggered by both hadron-induced and photon-induced EAS events. In the present study, we use 9 yr of TA SD data for a blind search for point sources of UHE photons. We utilize the statistics of the SD data, which benefit from a high duty cycle. The full Monte Carlo (MC) simulation of proton-induced and photon-induced EAS events allows us to perform the photon search up to the highest accessible energies, E ≳ 1020 eV. As the main tool for the present photon search, we use a multivariate analysis based on a number of SD parameters that make it possible to distinguish between photon and hadron primaries. While searches for diffuse UHE photons were performed by several EAS experiments, including Haverah Park (Ave et al. 2000), AGASA (Shinozaki et al. 2002; Risse et al. 2005), Yakutsk (Rubtsov et al. 2006; Glushkov et al. 2007, 2010), Pierre Auger (Abraham et al. 2007, 2008a; Bleve 2016; Aab et al. 2017c) and TA (Abu-Zayyad et al. 2013b; Abbasi et al. 2019a), the search for point sources of UHE photons has been done only by the Pierre Auger Observatory (Aab et al. 2014, 2017a). The latter searches were based on hybrid data and were limited to the 1017.3 < E < 1018.5 eV energy range. In the present paper, we use the TA SD data alone. We perform the searches in five energy ranges: E > 1018, E > 1018.5, E > 1019, E > 1019.5 and E > 1020 eV. We find no significant evidence of photon point sources in all energy ranges and we set the point-source flux upper limits from each direction in the TA field of view (FOV). The search for unspecified neutral particles was also previously performed by the TA (Abbasi et al. 2015). The limit on the point-source flux of neutral particles obtained in that work is close to the present photon point-source flux limits. 
    more » « less