skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Layered Cooperative Resource Sharing at a Wireless SDN Backhaul
This paper describes a unifying optimization framework to share backhaul network resources across different operators and wireless platforms. The architecture we consider, named LayBack, requires introducing a unifying Software Defined Network (SDN) orchestrator, sited where their respective traffic streams meet: at the wireless network backhaul. The work we present proposes a scalable decomposition of the resource allocation problem across different layers and time-scales.  more » « less
Award ID(s):
1716121
PAR ID:
10059297
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proc. IEEE Int. Conf. on Communications Workshops (ICC Workshops), Int. Workshop on 5G Architecture (5GARCH)
Page Range / eLocation ID:
1-6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. mmWave communication has been recognized as a highly promising technology for 5G wireless backhaul, which is capable of providing multi-gigabit per second transmission rates. However, in urban wireless backhaul environments, unforeseen events can cause short-term blockages or node failures and, therefore, network survivability is extremely important. In this paper, we investigate a novel relay-assisted mmWave backhaul network architecture, where a number of small-cell BSs and relays are deployed, e.g. on the lampposts of urban streets. Relays are used to provide multi-hop line-of-sight paths between small-cell BSs, which form logical links of the network. In this scenario, the interconnected logical links make up a mesh network, which offers opportunities for both link-level and network-level reconfiguration. We propose two joint link-network level reconfiguration schemes for recovery after exceptional events. One prioritizes relay path (link-level) reconfiguration and uses alternate network-level paths only if necessary. The other splits traffic on both reconfigured links and backup paths to improve network throughput. Simulation results demonstrate that the proposed schemes significantly outperform purely link-level and purely network-level reconfiguration schemes. The proposed approaches are shown to not only maintain high network throughput but to also provide robust blockage/fault tolerance across a range of scenarios for urban mmWave backhaul networks. 
    more » « less
  2. With the emergence of small cell networks and fifth-generation (5G) wireless networks, the backhaul becomes increasingly complex. This study addresses the problem of how a central SDN orchestrator can flexibly share the total backhaul capacity of the various wireless operators among their gateways and radio nodes (e.g., LTE enhanced Node Bs or Wi-Fi access points). In order to address this backhaul resource allocation problem, we introduce a novel backhaul optimization methodology in the context of the recently proposed LayBack SDN backhaul architecture. In particular, we explore the decomposition of the central optimization problem into a layered dual decomposition model that matches the architectural layers of the LayBack backhaul architecture. In order to promote scalability and responsiveness, we employ different timescales, i.e., fast timescales at the radio nodes and slower timescales in the higher LayBack layers that are closer to the central SDN orchestrator. We numerically evaluate the scalable layered optimization for a specific case of the LayBack backhaul architecture with four layers, namely a radio node (eNB) layer, a gateway layer, an operator layer, and central coordination in an SDN orchestrator layer. The coordinated sharing of the total backhaul capacity among multiple operators lowers the queue lengths compared to the conventional backhaul without sharing among operators. 
    more » « less
  3. Multiple drone-mounted base stations (DBSs) are used to be deployed over a disaster struck area to help mobile users (MUs) communicate with working BSs, which are located beyond the disaster-struck area. DBSs are considered as relay nodes between MUs and working BSs. In order to relax the bottleneck in wireless backhaul links, we propose a cooperative drone assisted mobile access network architecture by enabling DBSs (whose backhaul links are congested) to offload their traffic to other DBSs (whose backhaul links are not congested) via DBS-to-DBS communications. We formulate the DBS placement and channel allocation problem in the context of the cooperative drone assisted mobile access network architecture, and design a COoperative DBS plAcement and CHannel allocation (COACH) algorithm to solve the problem. The performance of COACH is demonstrated via extensive simulations. 
    more » « less
  4. In this paper, we investigate the design of high throughput relay-assisted millimeter-wave (mmWave) backhaul networks in urban areas. Different from most related works, we consider the deployment of dedicated simple mmWave relay devices to help enhance the line-of-sight (LoS) connectivity of the backhaul network in urban areas with abundant obstacles. Given a set of (logical) backhaul links between base stations in the network, we propose an algorithm to find high-throughput LoS paths with relays for all logical links by minimizing interference within and between paths. We also propose methods to modify the backhaul topology to increase the probability of finding high-throughput paths using our algorithm. Extensive simulations, based on a 3-D model of a section of downtown Atlanta, demonstrate that high-throughput topologies, with minimal inter-path and intra-path interference, are feasible in most cases. The analyses also yield some insights on the mmWave backhaul network design problem. 
    more » « less
  5. Transcending the capabilities of traditional architectures, metasurfaces offer nearlimitless control over the fundamental electromagnetic properties of wireless signals, presenting new opportunities for wireless communication. However, they also bring forth unprecedented security challenges, particularly for millimeter-wave and sub-THz wireless backhaul links employed for many critical functions, such as financial trading on Wall Street. In this article, we expose a new category of aerial ''MetaSurface-in-the-Middle'' attacks, wherein an adversary armed with an on-drone metasurface, MetaFly, can intercept wireless backhaul links with an almost imperceptible trace. Strikingly, such adversarial metasurfaces can be fabricated in minutes using standard office items like a foil sheet and a laminator. The attack is implemented and experimentally evaluated in both a large indoor atrium and outdoor rooftops in a large metropolitan area, demonstrating the adversary's ability to establish a secondary diffraction beam for eavesdropping while maintaining minimal impact on legitimate communication. 
    more » « less