skip to main content


Title: A Multi-Layer Multi-Timescale Network Utility Maximization Framework for the SDN-Based LayBack Architecture Enabling Wireless Backhaul Resource Sharing
With the emergence of small cell networks and fifth-generation (5G) wireless networks, the backhaul becomes increasingly complex. This study addresses the problem of how a central SDN orchestrator can flexibly share the total backhaul capacity of the various wireless operators among their gateways and radio nodes (e.g., LTE enhanced Node Bs or Wi-Fi access points). In order to address this backhaul resource allocation problem, we introduce a novel backhaul optimization methodology in the context of the recently proposed LayBack SDN backhaul architecture. In particular, we explore the decomposition of the central optimization problem into a layered dual decomposition model that matches the architectural layers of the LayBack backhaul architecture. In order to promote scalability and responsiveness, we employ different timescales, i.e., fast timescales at the radio nodes and slower timescales in the higher LayBack layers that are closer to the central SDN orchestrator. We numerically evaluate the scalable layered optimization for a specific case of the LayBack backhaul architecture with four layers, namely a radio node (eNB) layer, a gateway layer, an operator layer, and central coordination in an SDN orchestrator layer. The coordinated sharing of the total backhaul capacity among multiple operators lowers the queue lengths compared to the conventional backhaul without sharing among operators.  more » « less
Award ID(s):
1716121
NSF-PAR ID:
10174860
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Electronics
Volume:
8
Issue:
9
ISSN:
2079-9292
Page Range / eLocation ID:
937
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes a unifying optimization framework to share backhaul network resources across different operators and wireless platforms. The architecture we consider, named LayBack, requires introducing a unifying Software Defined Network (SDN) orchestrator, sited where their respective traffic streams meet: at the wireless network backhaul. The work we present proposes a scalable decomposition of the resource allocation problem across different layers and time-scales. 
    more » « less
  2. Network embedding has gained more attentions in recent years. It has been shown that the learned low-dimensional node vector representations could advance a myriad of graph mining tasks such as node classification, community detection, and link prediction. A vast majority of the existing efforts are overwhelmingly devoted to single-layered networks or homogeneous networks with a single type of nodes and node interactions. However, in many real-world applications, a variety of networks could be abstracted and presented in a multilayered fashion. Typical multi-layered networks include critical infrastructure systems, collaboration platforms, social recommender systems, to name a few. Despite the widespread use of multi-layered networks, it remains a daunting task to learn vector representations of different types of nodes due to the bewildering combination of both within-layer connections and cross-layer network dependencies. In this paper, we study a novel problem of multi-layered network embedding. In particular, we propose a principled framework – MANE to model both within-layer connections and cross-layer network dependencies simultaneously in a unified optimization framework for embedding representation learning. Experiments on real-world multi-layered networks corroborate the effectiveness of the proposed framework. 
    more » « less
  3. 1. Description of the objectives and motivation for the contribution to ECE education The demand for wireless data transmission capacity is increasing rapidly and this growth is expected to continue due to ongoing prevalence of cellular phones and new and emerging bandwidth-intensive applications that encompass high-definition video, unmanned aerial systems (UAS), intelligent transportation systems (ITS) including autonomous vehicles, and others. Meanwhile, vital military and public safety applications also depend on access to the radio frequency spectrum. To meet these demands, the US federal government is beginning to move from the proven but inefficient model of exclusive frequency assignments to a more-efficient, shared-spectrum approach in some bands of the radio frequency spectrum. A STEM workforce that understands the radio frequency spectrum and applications that use the spectrum is needed to further increase spectrum efficiency and cost-effectiveness of wireless systems over the next several decades to meet anticipated and unanticipated increases in wireless data capacity. 2. Relevant background including literature search examples if appropriate CISCO Systems’ annual survey indicates continued strong growth in demand for wireless data capacity. Meanwhile, undergraduate electrical and computer engineering courses in communication systems, electromagnetics, and networks tend to emphasize mathematical and theoretical fundamentals and higher-layer protocols, with less focus on fundamental concepts that are more specific to radio frequency wireless systems, including the physical and media access control layers of wireless communication systems and networks. An efficient way is needed to introduce basic RF system and spectrum concepts to undergraduate engineering students in courses such as those mentioned above who are unable to, or had not planned to take a full course in radio frequency / microwave engineering or wireless systems and networks. We have developed a series of interactive online modules that introduce concepts fundamental to wireless communications, the radio frequency spectrum, and spectrum sharing, and seek to present these concepts in context. The modules include interactive, JavaScript-based simulation exercises intended to reinforce the concepts that are presented in the modules through narrated slide presentations, text, and external links. Additional modules in development will introduce advanced undergraduate and graduate students and STEM professionals to configuration and programming of adaptive frequency-agile radios and spectrum management systems that can operate efficiently in congested radio frequency environments. Simulation exercises developed for the advanced modules allow both manual and automatic control of simulated radio links in timed, game-like simulations, and some exercises will enable students to select from among multiple pre-coded controller strategies and optionally edit the code before running the timed simulation. Additionally, we have developed infrastructure for running remote laboratory experiments that can also be embedded within the online modules, including a web-based user interface, an experiment management framework, and software defined radio (SDR) application software that runs in a wireless testbed initially developed for research. Although these experiments rely on limited hardware resources and introduce additional logistical considerations, they provide additional realism that may further challenge and motivate students. 3. Description of any assessment methods used to evaluate the effectiveness of the contribution, Each set of modules is preceded and followed by a survey. Each individual module is preceded by a quiz and followed by another quiz, with pre- and post-quiz questions drawn from the same pool. The pre-surveys allow students to opt in or out of having their survey and quiz results used anonymously in research. 4. Statement of results. The initial modules have been and are being used by three groups of students: (1) students in an undergraduate Introduction to Communication Systems course; (2) an interdisciplinary group of engineering students, including computer science students, who are participating in related undergraduate research project; and (3) students in a graduate-level communications course that includes both electrical and computer engineers. Analysis of results from the first group of students showed statistically significant increases from pre-quiz to post-quiz for each of four modules on fundamental wireless communication concepts. Results for the other students have not yet been analyzed, but also appear to show substantial pre-quiz to post-quiz increases in mean scores. 
    more » « less
  4. null (Ed.)
    Optical network technology is one of the leading candidates for meeting the required backhaul transport layer latency and capacity requirements of 5G services. In addition, its physical layer programmability supports the execution of advanced methods that can improve 5G service reliability and SLA compliance in the face of equipment failure. While a number of such methods is addressed in the literature, including Virtual Network Function (VNF) fault-tolerant methods, a full proof of concept is yet to be reported.The study in this paper describes a testbed — along with its Software Defined Networking (SDN) and Network Function Virtualization (NFV) capabilities — which is used to experimentally showcase the key functionalities that are required by VNF fault-tolerant methods. The testbed makes use of OpenROADM compliant Dense Wavelength Division Multiplexing (DWDM) equipment to implement the programmable backhaul of a Next Generation Radio Access Network (NG-RAN) Non-standalone (NSA) architecture running 4G Evolved Packet Core (EPC) with the 5G next-generation NodeB (gNB). Specifically, the testbed is used to showcase the live migration of virtualized EPC components that is required to restore pre-failure VNF. 
    more » « less
  5. Abstract Motivation

    Understanding functions of proteins in specific human tissues is essential for insights into disease diagnostics and therapeutics, yet prediction of tissue-specific cellular function remains a critical challenge for biomedicine.

    Results

    Here, we present OhmNet, a hierarchy-aware unsupervised node feature learning approach for multi-layer networks. We build a multi-layer network, where each layer represents molecular interactions in a different human tissue. OhmNet then automatically learns a mapping of proteins, represented as nodes, to a neural embedding-based low-dimensional space of features. OhmNet encourages sharing of similar features among proteins with similar network neighborhoods and among proteins activated in similar tissues. The algorithm generalizes prior work, which generally ignores relationships between tissues, by modeling tissue organization with a rich multiscale tissue hierarchy. We use OhmNet to study multicellular function in a multi-layer protein interaction network of 107 human tissues. In 48 tissues with known tissue-specific cellular functions, OhmNet provides more accurate predictions of cellular function than alternative approaches, and also generates more accurate hypotheses about tissue-specific protein actions. We show that taking into account the tissue hierarchy leads to improved predictive power. Remarkably, we also demonstrate that it is possible to leverage the tissue hierarchy in order to effectively transfer cellular functions to a functionally uncharacterized tissue. Overall, OhmNet moves from flat networks to multiscale models able to predict a range of phenotypes spanning cellular subsystems.

    Availability and implementation

    Source code and datasets are available at http://snap.stanford.edu/ohmnet.

     
    more » « less