This paper describes a unifying optimization framework to share backhaul network resources across different operators and wireless platforms. The architecture we consider, named LayBack, requires introducing a unifying Software Defined Network (SDN) orchestrator, sited where their respective traffic streams meet: at the wireless network backhaul. The work we present proposes a scalable decomposition of the resource allocation problem across different layers and time-scales.
more »
« less
A Multi-Layer Multi-Timescale Network Utility Maximization Framework for the SDN-Based LayBack Architecture Enabling Wireless Backhaul Resource Sharing
With the emergence of small cell networks and fifth-generation (5G) wireless networks, the backhaul becomes increasingly complex. This study addresses the problem of how a central SDN orchestrator can flexibly share the total backhaul capacity of the various wireless operators among their gateways and radio nodes (e.g., LTE enhanced Node Bs or Wi-Fi access points). In order to address this backhaul resource allocation problem, we introduce a novel backhaul optimization methodology in the context of the recently proposed LayBack SDN backhaul architecture. In particular, we explore the decomposition of the central optimization problem into a layered dual decomposition model that matches the architectural layers of the LayBack backhaul architecture. In order to promote scalability and responsiveness, we employ different timescales, i.e., fast timescales at the radio nodes and slower timescales in the higher LayBack layers that are closer to the central SDN orchestrator. We numerically evaluate the scalable layered optimization for a specific case of the LayBack backhaul architecture with four layers, namely a radio node (eNB) layer, a gateway layer, an operator layer, and central coordination in an SDN orchestrator layer. The coordinated sharing of the total backhaul capacity among multiple operators lowers the queue lengths compared to the conventional backhaul without sharing among operators.
more »
« less
- Award ID(s):
- 1716121
- PAR ID:
- 10174860
- Date Published:
- Journal Name:
- Electronics
- Volume:
- 8
- Issue:
- 9
- ISSN:
- 2079-9292
- Page Range / eLocation ID:
- 937
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Network embedding has gained more attentions in recent years. It has been shown that the learned low-dimensional node vector representations could advance a myriad of graph mining tasks such as node classification, community detection, and link prediction. A vast majority of the existing efforts are overwhelmingly devoted to single-layered networks or homogeneous networks with a single type of nodes and node interactions. However, in many real-world applications, a variety of networks could be abstracted and presented in a multilayered fashion. Typical multi-layered networks include critical infrastructure systems, collaboration platforms, social recommender systems, to name a few. Despite the widespread use of multi-layered networks, it remains a daunting task to learn vector representations of different types of nodes due to the bewildering combination of both within-layer connections and cross-layer network dependencies. In this paper, we study a novel problem of multi-layered network embedding. In particular, we propose a principled framework – MANE to model both within-layer connections and cross-layer network dependencies simultaneously in a unified optimization framework for embedding representation learning. Experiments on real-world multi-layered networks corroborate the effectiveness of the proposed framework.more » « less
-
null (Ed.)Optical network technology is one of the leading candidates for meeting the required backhaul transport layer latency and capacity requirements of 5G services. In addition, its physical layer programmability supports the execution of advanced methods that can improve 5G service reliability and SLA compliance in the face of equipment failure. While a number of such methods is addressed in the literature, including Virtual Network Function (VNF) fault-tolerant methods, a full proof of concept is yet to be reported.The study in this paper describes a testbed — along with its Software Defined Networking (SDN) and Network Function Virtualization (NFV) capabilities — which is used to experimentally showcase the key functionalities that are required by VNF fault-tolerant methods. The testbed makes use of OpenROADM compliant Dense Wavelength Division Multiplexing (DWDM) equipment to implement the programmable backhaul of a Next Generation Radio Access Network (NG-RAN) Non-standalone (NSA) architecture running 4G Evolved Packet Core (EPC) with the 5G next-generation NodeB (gNB). Specifically, the testbed is used to showcase the live migration of virtualized EPC components that is required to restore pre-failure VNF.more » « less
-
Dense subgraph detection is a fundamental building block for a va- riety of applications. Most of the existing methods aim to discover dense subgraphs within either a single network or a multi-view network while ignoring the informative node dependencies across multiple layers of networks in a complex system. To date, it largely remains a daunting task to detect dense subgraphs on multi-layered networks. In this paper, we formulate the problem of dense sub- graph detection on multi-layered networks based on cross-layer consistency principle. We further propose a novel algorithm Des- tine based on projected gradient descent with the following ad- vantages. First, armed with the cross-layer dependencies, Destine is able to detect significantly more accurate and meaningful dense subgraphs at each layer. Second, it scales linearly w.r.t. the num- ber of links in the multi-layered network. Extensive experiments demonstrate the efficacy of the proposed Destine algorithm in various cases.more » « less
-
null (Ed.)Wireless infrastructure is steadily evolving into wireless access for all humans and most devices, from 5G to Internet-of-Things. This widespread access creates the expectation of custom and adaptive services from the personal network to the backbone network. In addition, challenges of scale and interoperability exist across networks, applications and services, requiring an effective wireless network management infrastructure. For this reason Software-Defined Networks (SDN) have become an attractive research area for wireless and mobile systems. SDN can respond to sporadic topology issues such as dropped packets, message latency, and/or conflicting resource management, to improved collaboration between mobile access points, reduced interference and increased security options. Until recently, the main focus on wireless SDN has been a more centralized approach, which has issues with scalability, fault tolerance, and security. In this work, we propose a state of the art WAM-SDN system for large-scale network management. We discuss requirements for large scale wireless distributed WAM-SDN and provide preliminary benchmarking and performance analysis based on our hybrid distributed and decentralized architecture. Keywords: software defined networks, controller optimization, resilience.more » « less
An official website of the United States government

