skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Propagation of Enzyme‐Induced Surface Events inside Polymer Nanoassemblies for a Fast and Tunable Response
Abstract We report a new molecular design strategy that allows for the propagation of surface enzymatic events inside a supramolecular assembly for accelerated molecular release. The approach addresses a key shortcoming encountered with many of the currently available enzyme‐induced disassembly strategies, which rely on the unimer–aggregate equilibria of amphiphilic assemblies. The enzymatic response of the host to predictably tune the kinetics of guest‐molecule release can be programmed by controlling substrate accessibility through electrostatic complexation with a complementary polymer. Accelerated guest release in response to the enzyme is shown to be accomplished by a cooperative mechanism of enzyme‐triggered supramolecular host disassembly and host reorganization.  more » « less
Award ID(s):
1740597
PAR ID:
10059356
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
57
Issue:
24
ISSN:
1433-7851
Page Range / eLocation ID:
p. 7111-7115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A transient mechanism to achieve gelation in host–guest supramolecular hydrogels is demonstrated by acidification and pH correctionviaindirect control from a biocatalytic enzyme network. 
    more » « less
  2. Abstract The combination of multiple orthogonal interactions enables hierarchical complexity in self‐assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host–guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 1010m−1, directs hierarchical assembly of origami monomers into 1D nanofibers. This affinity regime enables efficient polymerization; a lower‐affinity β‐cyclodextrin–adamantane complex does not promote extended structures at a similar valency. Finally, the utility of the high‐affinity CB[7]–adamantane interactions is exploited to enable responsive enzymatic actuation of origami nanofibers assembled using peptide linkers. This work demonstrates the power of high‐affinity CB[7]–guest recognition as an orthogonal axis to drive self‐assembly in DNA nanotechnology. 
    more » « less
  3. Hydrogels prepared from supramolecular cross-linking motifs are appealing for use as biomaterials and drug delivery technologies. The inclusion of macromolecules (e.g., protein therapeutics) in these materials is relevant to many of their intended uses. However, the impact of dynamic network cross-linking on macromolecule diffusion must be better understood. Here, hydrogel networks with identical topology but disparate cross-link dynamics are explored. These materials are prepared from cross-linking with host–guest complexes of the cucurbit[7]uril (CB[7]) macrocycle and two guests of different affinity. Rheology confirms differences in bulk material dynamics arising from differences in cross-link thermodynamics. Fluorescence recovery after photobleaching (FRAP) provides insight into macromolecule diffusion as a function of probe molecular weight and hydrogel network dynamics. Together, both rheology and FRAP enable the estimation of the mean network mesh size, which is then related to the solute hydrodynamic diameters to further understand macromolecule diffusion. Interestingly, the thermodynamics of host–guest cross-linking are correlated with a marked deviation from classical diffusion behavior for higher molecular weight probes, yielding solute aggregation in high-affinity networks. These studies offer insights into fundamental macromolecular transport phenomena as they relate to the association dynamics of supramolecular networks. Translation of these materials from in vitro to in vivo is also assessed by bulk release of an encapsulated macromolecule. Contradictory in vitro to in vivo results with inverse relationships in release between the two hydrogels underscores the caution demanded when translating supramolecular biomaterials into application. 
    more » « less
  4. Abstract Cooperativity plays a critical role in self‐assembly and molecular recognition. A rigid aromatic oligoamide macrocycle with a cyclodirectional backbone binds with DABCO‐based cationic guests in a 2 : 1 ratio in high affinities (Ktotal≈1013 M−2) in the highly polar DMF. The host–guest binding also exhibits exceptionally strong positive cooperativity quantified by interaction factors α that are among the largest for synthetic host–guest systems. The unusually strong positive cooperativity, revealed by isothermal titration calorimetry (ITC) and fully corroborated by mass spectrometry, NMR and computational studies, is driven by guest‐induced stacking of the macrocycles and stabilization from the alkyl end chains of the guests, interactions that appear upon binding the second macrocycle. With its tight binding driven by extraordinary positive cooperativity, this host–guest system provides a tunable platform for studying molecular interactions and for constructing stable supramolecular assemblies. 
    more » « less
  5. A supramolecular dye-capture system comprising anionic amidosquaraine guest and macrocyclic tetralactam host exhibits nanomolar affinity and “turn on” visible fluorescence. Utility is demonstrated with a new fluorescent assay for liposome leakage induced by the biomedically important enzyme phospholipase A 2 . 
    more » « less