skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: The interplay between solid electrolyte interface (SEI) and dendritic lithium growth
Li dendrite formed in Li metal batteries can be categorized into two different types. One is the detrimental Li dendrite that heads towards the separator with a potential to short cell. The other is the ill-defined fibrous Li formed within bulk Li metal. The detrimental Li dendrite may cause cell short, while the other dendrites, covered by SEI, mainly increase cell impedance and terminate the cell operation, most often, before any “short” really happens. Without decoupling these two different Li dendrites, it is hard to develop any effective approach to realize both stable and safe Li metal batteries. Herein, a straightforward approach is proposed to induce the growth of detrimental dendritic Li so the cells are “shorted” frequently and consistently. Based on this new protocol, various electrolytes are revisited and the SEI derived are compared and quantified, providing new insights for addressing the challenges in rechargeable Li metal battery technologies.  more » « less
Award ID(s):
1748279
PAR ID:
10059473
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nano energy
Volume:
40
ISSN:
2211-2855
Page Range / eLocation ID:
34-41
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lithium (Li) metal anodes have regained intensive interest in recent years due to the ever-increasing demand for next-generation high energy battery technologies. Li metal, unfortunately, suffers from poor cycling stability and low efficiency as well as from the formation of dangerous Li dendrites, raising safety concerns. Utilizing solid-state electrolytes (SSEs) to prevent Li dendrite growth provides a promising approach to tackle the challenge. However, recent studies indicate that Li dendrites easily form at high current densities, which calls for full investigation of the fundamental mechanisms of Li dendrite formation within SSEs. Herein, the origin and evolution of Li dendrite growth through SSEs have been studied and compared by using Li 6.1 Ga 0.3 La 3 Zr 2 O 12 (LLZO) and NASICON-type Li 2 O–Al 2 O 3 –P 2 O 5 –TiO 2 –GeO 2 (LATP) pellets as the separators. We discover that a solid electrolyte interphase (SEI)-like interfacial layer between Li and SSE plays a critical role in alleviating the growth of dendritic Li, providing new insights into the interface between SSE and Li metal to enable future all solid-state batteries. 
    more » « less
  2. null (Ed.)
    Composite polymer electrolytes (CPEs) for solid-state Li metal batteries (SSLBs) still suffer from gradually increased interface resistance and unconstrained Li dendrite growth. Herein, we addressed the challenges by designing a LiF-rich inorganic solid-electrolyte interphase (SEI) through introducing a fluoride-salt concentrated interlayer on CPE film. The rigid and flexible CPE helps accommodate the volume change of electrodes, while the polymeric high-concentrated electrolyte (PHCE) surface-layer regulates Li-ion flux due to the formation of a stable LiF-rich SEI via anion reduction. The designed CPE-PHCE presents enhanced ionic conductivity and high oxidation stability of > 5.0V (vs. Li/Li+). What’s more, it dramatically reduces the interfacial resistance and achieves a high critical current density of 4.5 mA cm-2 for dendrite-free cycling. The SSLBs, fabricated with thin CPE-PHCE membrane (< 100 μm) and Co-free LiNiO2 cathode, exhibit exceptional electrochemical performance and long cycling stability. This approach of SEI design can also be applied to other types of batteries. 
    more » « less
  3. Lithium metal as an anode has been widely accepted due to its higher negative electrochemical potential and theoretical capacity. Nevertheless, the existing safety and cyclability issues limit lithium metal anodes from practical use in high-energy density batteries. Repeated Li deposition and dissolution processes upon cycling lead to the formation of dendrites at the interface which results in reduced Li availability for electrochemical reactions, disruption in Li transport through the interface and increased safety concerns due to short circuiting. Here, we demonstrate a novel strategy using Ionic Liquid Crystals (ILCs) as the electrolyte cum pseudo-separator to suppress dendrite growth with their anisotropic properties controlling Li-ion mass transport. A thermotropic ILC with two-dimensional Li-ion conducting pathways was synthesized and characterized. Microscopic and spectroscopic analyses elucidate that the ILC formed with a smectic A phase, which can be utilized for wide temperature window operation. The results of electrochemical studies corroborate the efficacy of ILC electrolytes in mitigating dendrite formation even after 850 hours and it is further substantiated by numerical simulation and the mechanism involved in dendritic suppression was deduced. 
    more » « less
  4. Abstract Suppressing Li dendrite growth has gained research interest due to the high theoretical capacity of Li metal anodes. Traditional Celgard membranes which are currently used in Li metal batteries fall short in achieving uniform Li flux at the electrode/electrolyte interface due to their inherent irregular pore sizes. Here, the use of an ultrathin (≈1.2 nm) carbon nanomembrane (CNM) which contains sub‐nanometer sized pores as an interlayer to regulate the mass transport of Li‐ions is demonstrated. Symmetrical cell analysis reveals that the cell with CNM interlayer cycles over 2x longer than the control experiment without the formation of Li dendrites. Further investigation on the Li plating morphology on Cu foil reveals highly dense deposits of Li metal using a standard carbonate electrolyte. A smoothed‐particle hydrodynamics simulation of the mass transport at the anode–electrolyte interface elucidates the effect of the CNM in promoting the formation of highly dense Li deposits and inhibiting the formation of dendrites. A lithium metal battery fabricated using the LiFePO4cathode exhibits a stable, flat voltage profile with low polarization for over 300 cycles indicating the effect of regulated mass transport. 
    more » « less
  5. Abstract The 3D nanocomposite structure of plated lithium (LiMetal) and solid electrolyte interphases (SEI), including a polymer‐rich surficial passivation layer (SEI exoskeleton) and inorganic SEI “fossils” buried inside amorphous Li matrix, is resolved using cryogenic transmission electron microscopy. With ether‐based DOLDME‐LiTFSI electrolyte, LiF and Li2O nanocrystals are formed and embedded in a thin but tough amorphous polymer in the SEI exoskeleton. The fast Li‐stripping directions are along or , which produces eight exposed {111} planes at halfway charging. Full Li stripping produces completely sagging, empty SEI husks that can sustain large bending and buckling, with the smallest bending radius of curvature observed approaching tens of nanometers without apparent damage. In the 2nd round of Li plating, a thin LiBCCsheet first nucleates at the current collector, extends to the top end of the deflated SEI husk, and then expands its thickness. The apparent zero wetting angle between LiBCCand the SEI interior means that the heterogeneous nucleation energy barrier is zero. Due to its complete‐wetting property and chemo‐mechanical stability, the SEI largely prevents further reactions between the Li metal and the electrolyte, which explains the superior performance of Li‐metal batteries with ether‐based electrolytes. However, uneven refilling of the SEI husks results in dendrite protrusions and some new SEI formation during the 2nd plating. A strategy to form bigger SEI capsules during the initial cycle with higher energy density than the following cycles enables further enhanced Coulombic efficiency to above 99%. 
    more » « less