skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: TESTING NORMALITY OF FUNCTIONAL TIME SERIES
We develop tests of normality for time series of functions. The tests are related to the commonly used Jarque–Bera test. The assumption of normality has played an important role in many methodological and theoretical developments in the field of functional data analysis. Yet, no inferential procedures to verify it have been proposed so far, even for i.i.d. functions. We propose several approaches which handle two paramount challenges: (i) the unknown temporal dependence structure and (ii) the estimation of the optimal finite-dimensional projection space.We evaluate the tests via simulations and establish their large sample validity under general conditions. We obtain useful insights by applying them to pollution and intraday price curves. While the pollution curves can be treated as normal, the normality of high-frequency price curves is rejected.  more » « less
Award ID(s):
1737795
PAR ID:
10059530
Author(s) / Creator(s):
 
Date Published:
Journal Name:
Journal of time series analysis
Volume:
39
ISSN:
0143-9782
Page Range / eLocation ID:
471-487
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary The paper is concerned with testing normality in samples of curves and error curves estimated from functional regression models. We propose a general paradigm based on the application of multivariate normality tests to vectors of functional principal components scores. We examine finite sample performance of a number of such tests and select the best performing tests. We apply them to several extensively used functional data sets and determine which can be treated as normal, possibly after a suitable transformation. We also offer practical guidance on software implementations of all tests we study and develop large sample justification for tests based on sample skewness and kurtosis of functional principal component scores. 
    more » « less
  2. We study the allocation of divisible goods to competing agents via a market mechanism, focusing on agents with Leontief utilities. The majority of the economics and mechanism design literature has focused on \emph{linear} prices, meaning that the cost of a good is proportional to the quantity purchased. Equilibria for linear prices are known to be exactly the maximum Nash welfare allocations. \emph{Price curves} allow the cost of a good to be any (increasing) function of the quantity purchased. We show that price curve equilibria are not limited to maximum Nash welfare allocations with two main results. First, we show that an allocation can be supported by strictly increasing price curves if and only if it is \emph{group-domination-free}. A similarly characterization holds for weakly increasing price curves. We use this to show that given any allocation, we can compute strictly (or weakly) increasing price curves that support it (or show that none exist) in polynomial time. These results involve a connection to the \emph{agent-order matrix} of an allocation, which may have other applications. Second, we use duality to show that in the bandwidth allocation setting, any allocation maximizing a CES welfare function can be supported by price curves. 
    more » « less
  3. In the plane, thewinding numberis the number of times a curve wraps around a given point. Winding numbers are a basic component of geometric algorithms such as point-in-polygon tests, and their generalization to data with noise or topological errors has proven valuable for geometry processing tasks ranging from surface reconstruction to mesh booleans. However, standard definitions do not immediately apply on surfaces, where not all curves bound regions. We develop a meaningful generalization, starting with the well-known relationship between winding numbers and harmonic functions. By processing the derivatives of such functions, we can robustly filter out components of the input that do not bound any region. Ultimately, our algorithm yields (i) a closed, completed version of the input curves, (ii) integer labels for regions that are meaningfully bounded by these curves, and (iii) the complementary curves that do not bound any region. The main computational cost is solving a standard Poisson equation, or for surfaces with nontrivial topology, a sparse linear program. We also introduce special basis functions to represent singularities that naturally occur at endpoints of open curves. 
    more » « less
  4. We derive several tests for the presence of a periodic component in a time series of functions. We consider both the traditional setting in which the periodic functional signal is contaminated by functional white noise, and a more general setting of a weakly dependent contaminating process. Several forms of the periodic component are considered. Our tests are motivated by the likelihood principle and fall into two broad categories, which we term multivariate and fully functional. Generally, for the functional series that motivate this research, the fully functional tests exhibit a superior balance of size and power. Asymptotic null distributions of all tests are derived and their consistency is established. Their finite sample performance is examined and compared by numerical studies and application to pollution data. 
    more » « less
  5. Abstract Quantifying the association between components of multivariate random curves is of general interest and is a ubiquitous and basic problem that can be addressed with functional data analysis. An important application is the problem of assessing functional connectivity based on functional magnetic resonance imaging (fMRI), where one aims to determine the similarity of fMRI time courses that are recorded on anatomically separated brain regions. In the functional brain connectivity literature, the static temporal Pearson correlation has been the prevailing measure for functional connectivity. However, recent research has revealed temporally changing patterns of functional connectivity, leading to the study of dynamic functional connectivity. This motivates new similarity measures for pairs of random curves that reflect the dynamic features of functional similarity. Specifically, we introduce gradient synchronization measures in a general setting. These similarity measures are based on the concordance and discordance of the gradients between paired smooth random functions. Asymptotic normality of the proposed estimates is obtained under regularity conditions. We illustrate the proposed synchronization measures via simulations and an application to resting-state fMRI signals from the Alzheimer’s Disease Neuroimaging Initiative and they are found to improve discrimination between subjects with different disease status. 
    more » « less