With the prevalence of mental health problems today, designing human-robot interaction for mental health intervention is not only possible, but critical. The current experiment examined how three types of robot disclosure (emotional, technical, and by-proxy) affect robot perception and human disclosure behavior during a stress-sharing activity. Emotional robot disclosure resulted in the lowest robot perceived safety. Post-hoc analysis revealed that increased perceived stress predicted reduced human disclosure, user satisfaction, robot likability, and future robot use. Negative attitudes toward robots also predicted reduced intention for future robot use. This work informs on the possible design of robot disclosure, as well as how individual attributes, such as perceived stress, can impact human robot interaction in a mental health context.
more »
« less
Investigation of human-robot comfort with a small Unmanned Aerial Vehicle compared to a ground robot
- Award ID(s):
- 1638099
- PAR ID:
- 10059811
- Date Published:
- Journal Name:
- 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
- Page Range / eLocation ID:
- 2758 to 2765
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ferretti, Gianni (Ed.)Many anticipated physical human-robot interaction (pHRI) applications in the near future are overground tasks such as walking assistance. For investigating the biomechanics of human movement during pHRI, this work presents Ophrie, a novel interactive robot dedicated for physical interaction tasks with a human in overground settings. Unique design requirements for pHRI were considered in implementing the one-arm mobile robot, such as the low output impedance and the ability to apply small interaction forces. The robot can measure the human arm stiffness, an important physical quantity that can reveal human biomechanics during overground pHRI, while the human walks alongside the robot. This robot is anticipated to enable novel pHRI experiments and advance our understanding of intuitive and effective overground pHRI.more » « less
-
For robots to seamlessly interact with humans, we first need to make sure that humans and robots understand one another. Diverse algorithms have been developed to enable robots to learn from humans (i.e., transferring information from humans to robots). In parallel, visual, haptic, and auditory communication interfaces have been designed to convey the robot’s internal state to the human (i.e., transferring information from robots to humans). Prior research often separates these two directions of information transfer, and focuses primarily on either learning algorithms or communication interfaces. By contrast, in this survey we take an interdisciplinary approach to identify common themes and emerging trends that close the loop between learning and communication. Specifically, we survey state-of-the-art methods and outcomes for communicating a robot’s learning back to the human teacher during human-robot interaction. This discussion connects human-in-the-loop learning methods and explainable robot learning with multimodal feedback systems and measures of human-robot interaction. We find that—when learning and communication are developed together—the resulting closed-loop system can lead to improved human teaching, increased human trust, and human-robot co-adaptation. The paper includes a perspective on several of the interdisciplinary research themes and open questions that could advance how future robots communicate their learning to everyday operators. Finally, we implement a selection of the reviewed methods in a case study where participants kinesthetically teach a robot arm. This case study documents and tests an integrated approach for learning in ways that can be communicated, conveying this learning across multimodal interfaces, and measuring the resulting changes in human and robot behavior.more » « less
-
Objective: Physical and cognitive workloads and performance were studied for a corrective shared control (CSC) human–robot collaborative (HRC) sanding task. Background: Manual sanding is physically demanding. Collaborative robots (cobots) can potentially reduce physical stress, but fully autonomous implementation has been particularly challenging due to skill, task variability, and robot limitations. CSC is an HRC method where the robot operates semiautonomously while the human provides real-time corrections. Methods: Twenty laboratory participants removed paint using an orbital sander, both manually and with a CSC robot. A fully automated robot was also tested. Results: The CSC robot improved subjective discomfort compared to manual sanding in the upper arm by 29.5%, lower arm by 32%, hand by 36.5%, front of the shoulder by 24%, and back of the shoulder by 17.5%. Muscle fatigue measured using EMG, was observed in the medial deltoid and flexor carpi radialis for the manual condition. The composite cognitive workload on the NASA-TLX increased by 14.3% for manual sanding due to high physical demand and effort, while mental demand was 14% greater for the CSC robot. Digital imaging showed that the CSC robot outperformed the automated condition by 7.16% for uniformity, 4.96% for quantity, and 6.06% in total. Conclusions: In this example, we found that human skills and techniques were integral to sanding and can be successfully incorporated into HRC systems. Humans performed the task using the CSC robot with less fatigue and discomfort. Applications: The results can influence implementation of future HRC systems in manufacturing environments.more » « less
-
Speakers build rapport in the process of aligning conversational behaviors with each other. Rapport engendered with a teachable agent while instructing domain material has been shown to promote learning. Past work on lexical alignment in the field of education suffers from limitations in both the measures used to quantify alignment and the types of interactions in which alignment with agents has been studied. In this paper, we apply alignment measures based on a data-driven notion of shared expressions (possibly composed of multiple words) and compare alignment in one-on-one human-robot (H-R) interactions with the H-R portions of collaborative human-human-robot (H-H-R) interactions. We find that students in the H-R setting align with a teachable robot more than in the H-H-R setting and that the relationship between lexical alignment and rapport is more complex than what is predicted by previous theoretical and empirical work.more » « less
An official website of the United States government

