skip to main content


Title: M2G: A Monitor of Monitoring Systems with Ground Truth Validation Features for Research-Oriented Residential Applications
Research in the area of internet-of-things, cyber physical- systems, and smart health often employ sensor systems at residences for continuous monitoring. Such research oriented residential monitoring systems (RRMSs) usually face two major challenges, long-term reliable operation management and validation of system functionality with minimal human effort. Targeting these two challenges, this paper describes a monitor of monitoring systems with ground-truth validation capabilities, M2G. It consists of two subsystems, the Monitor2 system and the Ground-truth validation system. The Monitor2 system encapsulates a flexible set of general-purpose components to monitor the operation and connectivity of heterogeneous sensor devices (e.g. smart watches, smart phones, microphones, beacons, etc.), a local base-station, as well as a cloud server. It provides a user-friendly interface and supports different types of RRMSs in various contexts. The system also features a ground truth validation system to support obtaining ground truth in the field. Additionally, customized alerts can be sent to remote administrators and other personnel to report any dysfunction or inaccuracy of the system in real time. M2G is applied to three very different case studies: the M2FED system which monitors family eating dynamics, an in-home wireless sensing system for monitoring nighttime agitation, and the BESI system which monitors behavioral and environmental parameters to predict health events and to provide interventions. The results indicate that M2G is a comprehensive system that (i) requires small cost in time and effort to adapt to an existing RRMS, (ii) provides reliable data collection and reduction in data loss by detecting faults in real-time, and (iii) provides a convenient and timely ground truth validation facility.  more » « less
Award ID(s):
1521722
NSF-PAR ID:
10059941
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
MASS
ISSN:
0330-9231
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In droplet-on-demand liquid metal jetting (DoD-LMJ) additive manufacturing, complex physical interactions govern the droplet characteristics, such as size, velocity, and shape. These droplet characteristics, in turn, determine the functional quality of the printed parts. Hence, to ensure repeatable and reliable part quality it is necessary to monitor and control the droplet characteristics. Existing approaches for in-situ monitoring of droplet behavior in DoD-LMJ rely on high-speed imaging sensors. The resulting high volume of droplet images acquired is computationally demanding to analyze and hinders real-time control of the process. To overcome this challenge, the objective of this work is to use time series data acquired from an in-process millimeter-wave sensor for predicting the size, velocity, and shape characteristics of droplets in DoD-LMJ process. As opposed to high-speed imaging, this sensor produces data-efficient time series signatures that allows rapid, real-time process monitoring. We devise machine learning models that use the millimeter-wave sensor data to predict the droplet characteristics. Specifically, we developed multilayer perceptron-based non-linear autoregressive models to predict the size and velocity of droplets. Likewise, a supervised machine learning model was trained to classify the droplet shape using the frequency spectrum information contained in the millimeter-wave sensor signatures. High-speed imaging data served as ground truth for model training and validation. These models captured the droplet characteristics with a statistical fidelity exceeding 90%, and vastly outperformed conventional statistical modeling approaches. Thus, this work achieves a practically viable sensing approach for real-time quality monitoring of the DoD-LMJ process, in lieu of the existing data-intensive image-based techniques.

     
    more » « less
  2. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less
  3. Internet of Things (IoT) is a connected network of devices that exchange data using different protocols. The application of IoT ranges from intelligent TVs and intelligent Refrigerators to smart Transportation. This research aims to provide students with hands-on training on how to develop an IoT platform that supports device management, connectivity, and data management. People tend to build interconnected devices without having a basic understanding of how the IoT platform backend function. Studying the Arm Pelion will help to understand how IoT devices operate under the hood. This past summer, Morgan State University has hosted undergraduate engineering students and high school STEM teachers to conduct IoT security research in the Cybersecurity Assurance & Policy (CAP) Center. The research project involved integrating various hardware sensor devices and real-time data monitoring using the Arm Pelion IoT development platform. Some of the student/teacher outcomes from the project include: 1) Learning about IoT Technology and security; 2) Programming an embedded system using Arm Mbed development board and IDE; 3 3) Developing a network of connected IoT devices using different protocols such as LWM2M, MQTT, CoAP; 4) Investigating the cybersecurity risks associated with the platform; and 5) Using data analysis and visualization to understand the network data and packet flow. First, the student/teacher must consider the IoT framework to understand how to address the security. The IoT framework describes the essential functions of an IoT network, breaking it down into separate layers. These layers include an application layer, middleware layer, and connectivity layer. The application layer allows the users to access the platform via a smartphone or any other dashboard. The Middleware layer represents the backend system that provides edge devices with data management, messaging, application services, and authentication. Finally, the connectivity layer includes devices that connect the user to the network, including Bluetooth or WiFi. The platform consists of several commercial IoT devices such as a smart camera, baby monitor, smart light, and other devices. We then create algorithms to classify the network data flow; to visualize the packets flow in the network and the structure of the packets data frame over time. 
    more » « less
  4. Recent advancements in sensors, device manufacturing, and big data technologies have enabled the design and manufacturing of smart wearables for a wide array of applications in healthcare. These devices can be used to remotely monitor and diagnose various diseases and aid in the rehabilitation of patients. Smart wearables are an unobtrusive and affordable alternative to costly and time-consuming health care efforts such as hospitalization and late diagnosis. Developments in micro- and nanotechnologies have led to the miniaturization of sensors, hybrid 3D printing of flexible plastics, embedded electronics, and intelligent fabrics, as well as wireless communication mediums that permit the processing, storage, and communication of data between patients and healthcare facilities. Due to these complex component architectures that comprise smart wearables, manufacturers have faced a number of problems, including minimum sensor configuration, data security, battery life, appropriate user interfaces, user acceptance, proper diagnosis, and many more. There has been a significant increase in interest from both the academic and industrial communities in research and innovation related to smart wearables. However, since smart wearables integrate several different aspects such as design, manufacturing, and analytics, the existing literature is quite widespread, making it less accessible for researchers and practitioners. The purpose of this study is to narrow this gap by providing a state-of-the-art review of the extant design, manufacturing, and analytics literature on smart wearables-all in one place- thereby facilitating future work in this rapidly growing field of research and application. Lastly, it also provides an in-depth discussion on two very important challenges facing the smart wearable devices, which include barriers to user adoption and the manufacturing technologies of the wearable devices. 
    more » « less
  5. Abstract

    Recent advancements in sensors, device manufacturing and big data technologies have enabled the design and manufacturing of smart wearables for a wide array of applications in health care. These devices can be used to remotely monitor and diagnose various diseases and aid in the rehabilitation of patients. Smart wearables are an unobtrusive and affordable alternative to costly and time‐consuming healthcare efforts such as hospitalization and late diagnosis. Developments in micro‐ and nanotechnologies have led to the miniaturization of sensors, hybrid 3D printing of flexible plastics, embedded electronics and intelligent fabrics, as well as wireless communication mediums that permit the processing, storage and communication of data between patients and healthcare facilities. Due to these complex component architectures that comprise smart wearables, manufacturers have faced a number of problems, including minimum sensor configuration, data security, battery life, appropriate user interfaces, user acceptance, proper diagnosis and many more. There has been a significant increase in interest from both the academic and industrial communities in research and innovation related to smart wearables. However, as smart wearables integrate several different aspects such as design, manufacturing and analytics, the existing literature is quite widespread, making it less accessible for researchers and practitioners. The purpose of this study was to narrow this gap by providing a state‐of‐the‐art review of the extant design, manufacturing and analytics literature on smart wearables—all in one place—thereby facilitating future work in this rapidly growing field of research and application. Lastly, it also provides an in‐depth discussion on two very important challenges facing the smart wearable devices, which include barriers to user adoption and the manufacturing technologies of the wearable devices.

     
    more » « less