skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Selfish Learning: Leveraging the Greed in Social Learning
We introduce a sequential Bayesian binary hypothesis testing problem under social learning, termed selfish learning, where agents work to maximize their individual rewards. In particular, each agent receives a private signal and is aware of decisions made by earlier-acting agents. Beside inferring the underlying hypothesis, agents also decide whether to stop and declare, or pass the inference to the next agent. The employer rewards only correct responses and the reward per worker decreases with the number of employees used for decision making. We characterize decision regions of agents in the infinite and finite horizon. In particular, we show that the decision boundaries in the infinite horizon are the solutions to a Markov Decision Process with discounted costs, and can be solved using value iteration. In the finite horizon, we show that team performance is enhanced upon appropriate incentivization when compared to sequential social learning.  more » « less
Award ID(s):
1717530
PAR ID:
10059998
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work explores sequential Bayesian binary hypothesis testing in the social learning setup under expertise diversity. We consider a two-agent (say advisor-learner) sequential binary hypothesis test where the learner infers the hypothesis based on the decision of the advisor, a prior private signal, and individual belief. In addition, the agents have varying expertise, in terms of the noise variance in the private signal. Under such a setting, we first investigate the behavior of optimal agent beliefs and observe that the nature of optimal agents could be inverted depending on expertise levels. We also discuss suboptimality of the Prelec reweighting function under diverse expertise. Next, we consider an advisor selection problem wherein the belief of the learner is fixed and the advisor is to be chosen for a given prior. We characterize the decision region for choosing such an advisor and argue that a learner with beliefs varying from the true prior often ends up selecting a suboptimal advisor. 
    more » « less
  2. We consider the problem of offline reinforcement learning (RL) -- a well-motivated setting of RL that aims at policy optimization using only historical data. Despite its wide applicability, theoretical understandings of offline RL, such as its optimal sample complexity, remain largely open even in basic settings such as \emph{tabular} Markov Decision Processes (MDPs). In this paper, we propose Off-Policy Double Variance Reduction (OPDVR), a new variance reduction based algorithm for offline RL. Our main result shows that OPDVR provably identifies an ϵ-optimal policy with O˜(H2/dmϵ2) episodes of offline data in the finite-horizon stationary transition setting, where H is the horizon length and dm is the minimal marginal state-action distribution induced by the behavior policy. This improves over the best known upper bound by a factor of H. Moreover, we establish an information-theoretic lower bound of Ω(H2/dmϵ2) which certifies that OPDVR is optimal up to logarithmic factors. Lastly, we show that OPDVR also achieves rate-optimal sample complexity under alternative settings such as the finite-horizon MDPs with non-stationary transitions and the infinite horizon MDPs with discounted rewards. 
    more » « less
  3. We propose a deductive synthesis framework for construct- ing reinforcement learning (RL) agents that provably satisfy temporal reach-avoid specifications over infinite horizons. Our approach decomposes these temporal specifications into a sequence of finite-horizon subtasks, for which we synthesize individual RL policies. Using formal verification techniques, we ensure that the composition of a finite number of subtask policies guarantees satisfaction of the overall specification over infinite horizons. Experimental results on a suite of benchmarks show that our synthesized agents outperform standard RL methods in both task performance and compliance with safety and temporal requirements. 
    more » « less
  4. Abstract We propose a deductive synthesis framework for constructing reinforcement learning (RL) agents that provably satisfy temporal reach-avoid specifications over infinite horizons. Our approach decomposes these temporal specifications into a sequence of finite-horizon subtasks, for which we synthesize individual RL policies. Using formal verification techniques, we ensure that the composition of a finite number of subtask policies guarantees satisfaction of the overall specification over infinite horizons. Experimental results on a suite of benchmarks show that our synthesized agents outperform standard RL methods in both task performance and compliance with safety and temporal requirements. 
    more » « less
  5. Regardless of how much data artificial intelligence agents have available, agents will inevitably encounter previously unseen situations in real-world deployments. Reacting to novel situations by acquiring new information from other people—socially situated learning—is a core faculty of human development. Unfortunately, socially situated learning remains an open challenge for artificial intelligence agents because they must learn how to interact with people to seek out the information that they lack. In this article, we formalize the task of socially situated artificial intelligence—agents that seek out new information through social interactions with people—as a reinforcement learning problem where the agent learns to identify meaningful and informative questions via rewards observed through social interaction. We manifest our framework as an interactive agent that learns how to ask natural language questions about photos as it broadens its visual intelligence on a large photo-sharing social network. Unlike active-learning methods, which implicitly assume that humans are oracles willing to answer any question, our agent adapts its behavior based on observed norms of which questions people are or are not interested to answer. Through an 8-mo deployment where our agent interacted with 236,000 social media users, our agent improved its performance at recognizing new visual information by 112%. A controlled field experiment confirmed that our agent outperformed an active-learning baseline by 25.6%. This work advances opportunities for continuously improving artificial intelligence (AI) agents that better respect norms in open social environments. 
    more » « less