As intelligent systems increasingly blend into our everyday life, artificial social intelligence becomes a prominent area of research. Intelligent systems must be socially intelligent in order
to comprehend human intents and maintain a rich level of interaction with humans. Human language offers a unique unconstrained approach to probe through questions and reason through answers about social situations. This unconstrained approach extends previous attempts to model social intelligence through numeric supervision (e.g. sentiment and emotions labels). In this paper, we introduce the Social-IQ, an unconstrained benchmark specifically designed to train and evaluate socially intelligent technologies. By providing a rich source of open-ended questions and answers, Social-IQ opens the door to explainable social intelligence. The dataset contains rigorously annotated and validated videos, questions and answers, as well as annotations for the complexity level of each question and answer. Social- IQ contains 1, 250 natural in-thewild social situations, 7, 500 questions and 52, 500 correct and incorrect answers. Although humans can reason about social situations with very high accuracy (95.08%), existing state-of-the-art computational models struggle on this task. As a result, Social-IQ brings novel challenges that will spark future research in social intelligence modeling, visual reasoning, and multimodal question answering (QA).
more »
« less
Socially situated artificial intelligence enables learning from human interaction
Regardless of how much data artificial intelligence agents have available, agents will inevitably encounter previously unseen situations in real-world deployments. Reacting to novel situations by acquiring new information from other people—socially situated learning—is a core faculty of human development. Unfortunately, socially situated learning remains an open challenge for artificial intelligence agents because they must learn how to interact with people to seek out the information that they lack. In this article, we formalize the task of socially situated artificial intelligence—agents that seek out new information through social interactions with people—as a reinforcement learning problem where the agent learns to identify meaningful and informative questions via rewards observed through social interaction. We manifest our framework as an interactive agent that learns how to ask natural language questions about photos as it broadens its visual intelligence on a large photo-sharing social network. Unlike active-learning methods, which implicitly assume that humans are oracles willing to answer any question, our agent adapts its behavior based on observed norms of which questions people are or are not interested to answer. Through an 8-mo deployment where our agent interacted with 236,000 social media users, our agent improved its performance at recognizing new visual information by 112%. A controlled field experiment confirmed that our agent outperformed an active-learning baseline by 25.6%. This work advances opportunities for continuously improving artificial intelligence (AI) agents that better respect norms in open social environments.
more »
« less
- Award ID(s):
- 1900638
- PAR ID:
- 10437908
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 39
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A multiagent system is a society of autonomous agents whose interactions can be regulated via social norms. In general, the norms of a society are not hardcoded but emerge from the agents’ interactions. Specifically, how the agents in a society react to each other’s behavior and respond to the reactions of others determines which norms emerge in the society. We think of these reactions by an agent to the satisfactory or unsatisfactory behaviors of another agent as communications from the first agent to the second agent. Understanding these communications is a kind of social intelligence: these communications provide natural drivers for norm emergence by pushing agents toward certain behaviors, which can become established as norms. Whereas it is well-known that sanctioning can lead to the emergence of norms, we posit that a broader kind of social intelligence can prove more effective in promoting cooperation in a multiagent system. Accordingly, we develop Nest, a framework that models social intelligence via a wider variety of communications and understanding of them than in previous work. To evaluate Nest, we develop a simulated pandemic environment and conduct simulation experiments to compare Nest with baselines considering a combination of three kinds of social communication: sanction, tell, and hint. We find that societies formed of Nest agents achieve norms faster. Moreover, Nest agents effectively avoid undesirable consequences, which are negative sanctions and deviation from goals, and yield higher satisfaction for themselves than baseline agents despite requiring only an equivalent amount of information.more » « less
-
Enabling efficient communication in artificial agents brings us closer to machines that can cooperate with each other and with human partners. Hand-engineered approaches have substantial limitations, leading to increased interest in methods for communication to emerge autonomously between artificial agents. Most of the research in the field explores unsituated communication in one-step referential tasks. The tasks are not temporally interactive and lack time pressures typically present in natural communication and language learning. In these settings, agents can successfully learn what to communicate but not when or whether to communicate. Here, we extend the literature by assessing emergence of communication between reinforcement learning agents in a temporally interactive, cooperative task of navigating a gridworld environment. We show that, through multi-step interactions, agents develop just-in-time messaging protocols that enable them to successfully solve the task. With memory—which provides flexibility around message timing—agent pairs converge to a look-ahead communication protocol, finding an optimal solution to the task more quickly than without memory. Lastly, we explore situated communication, enabling the acting agent to choose when and whether to communicate. With the opportunity cost of forgoing an action to communicate, the acting agent learns to solicit information sparingly, in line with the Gricean Maxim of quantity. Our results point towards the importance of studying language emergence through situated communication in multi-step interactions.more » « less
-
An overarching goal of Artificial Intelligence (AI) is creating autonomous, social agents that help people. Two important challenges, though, are that different people prefer different assistance from agents and that preferences can change over time. Thus, helping behaviors should be tailored to how an individual feels during the interaction. We hypothesize that human nonverbal behavior can give clues about users' preferences for an agent's helping behaviors, augmenting an agent's ability to computationally predict such preferences with machine learning models. To investigate our hypothesis, we collected data from 194 participants via an online survey in which participants were recorded while playing a multiplayer game. We evaluated whether the inclusion of nonverbal human signals, as well as additional context (e.g., via game or personality information), led to improved prediction of user preferences between agent behaviors compared to explicitly provided survey responses. Our results suggest that nonverbal communication -- a common type of human implicit feedback -- can aid in understanding how people want computational agents to interact with them.more » « less
-
We train embodied agents to play Visual Hide and Seek to study the relationship between agent behaviors and environmental complexity. In Visual Hide and Seek, a prey must navigate in a simulated environment in order to avoid capture from a predator, only relying on first-person visual observations. By probing different environmental factors, agents exhibit diverse hiding strategies and even the knowledge of its own visibility to other agents in the scene. Furthermore, we quantitatively analyze how agent weaknesses, such as slower speed, affect the learned policy. Our results suggest that, although agent weakness makes the learning problem more challenging, they also cause more useful features to be learned.more » « less