skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mathematical aspects of molecular replacement. IV. Measure-theoretic decompositions of motion spaces
In molecular-replacement (MR) searches, spaces of motions are explored for determining the appropriate placement of rigid-body models of macromolecules in crystallographic asymmetric units. The properties of the space of non-redundant motions in an MR search, called a `motion space', are the subject of this series of papers. This paper, the fourth in the series, builds on the others by showing that when the space group of a macromolecular crystal can be decomposed into a product of two space subgroups that share only the lattice translation group, the decomposition of the group provides different decompositions of the corresponding motion spaces. Then an MR search can be implemented by trading off between regions of the translation and rotation subspaces. The results of this paper constrain the allowable shapes and sizes of these subspaces. Special choices result when the space group is decomposed into a product of a normal Bieberbach subgroup and a symmorphic subgroup (which is a common occurrence in the space groups encountered in protein crystallography). Examples of Sohncke space groups are used to illustrate the general theory in the three-dimensional case (which is the relevant case for MR), but the general theory in this paper applies to any dimension.  more » « less
Award ID(s):
1640970
PAR ID:
10060063
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Acta Crystallographica Section A Foundations and Advances
Volume:
73
Issue:
5
ISSN:
2053-2733
Page Range / eLocation ID:
387 to 402
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper mathematically characterizes the tiny feasible regions within the vast 6D rotation–translation space in a full molecular replacement (MR) search. The capability to a priori isolate such regions is potentially important for enhancing robustness and efficiency in computational phasing in macromolecular crystallography (MX). The previous four papers in this series have concentrated on the properties of the full configuration space of rigid bodies that move relative to each other with crystallographic symmetry constraints. In particular, it was shown that the configuration space of interest in this problem is the right-coset space Γ\ G , where Γ is the space group of the chiral macromolecular crystal and G is the group of rigid-body motions, and that fundamental domains F Γ\ G can be realized in many ways that have interesting algebraic and geometric properties. The cost function in MR methods can be viewed as a function on these fundamental domains. This, the fifth and final paper in this series, articulates the constraints that bodies packed with crystallographic symmetry must obey. It is shown that these constraints define a thin feasible set inside a motion space and that they fall into two categories: (i) the bodies must not interpenetrate, thereby excluding so-called `collision zones' from consideration in MR searches; (ii) the bodies must be in contact with a sufficient number of neighbors so as to form a rigid network leading to a physically realizable crystal. In this paper, these constraints are applied using ellipsoidal proxies for proteins to bound the feasible regions. It is shown that the volume of these feasible regions is small relative to the total volume of the motion space, which justifies the use of ellipsoids as proxies for complex proteins in MR searches, and this is demonstrated with P 1 (the simplest space group) and with P 2 1 2 1 2 1 (the most common space group in MX). 
    more » « less
  2. Abstract Suppose that is a free product , where each of the groups is torsion‐free and is a free group of rank . Let be the deformation space associated to this free product decomposition. We show that the diameter of the projection of the subset of where a given element has bounded length to the ‐factor graph is bounded, where the diameter bound depends only on the length bound. This relies on an analysis of the boundary of as a hyperbolic group relative to the collection of subgroups together with a given nonperipheral cyclic subgroup. The main theorem is new even in the case that , in which case is the Culler–Vogtmann outer space. In a future paper, we will apply this theorem to study the geometry of free group extensions. 
    more » « less
  3. This is the third in a series of papers on standard monomial theory and invariant theory of arc spaces. For any algebraically closed field K, we prove the arc space analogue of the first and second fundamental theorems of invariant theory for the special linear group. This is more subtle than the results for the general linear and symplectic groups obtained in the first two papers because the arc space of the corresponding affine quotients can be nonreduced. 
    more » « less
  4. The unitary group acting on the Hilbert space $${\cal H}:=(C^2)^{\otimes 3}$$ of three quantum bits admits a Lie subgroup, $$U^{S_3}(8)$$, of elements which permute with the symmetric group of permutations of three objects. Under the action of such a Lie subgroup, the Hilbert space $${\cal H}$$ splits into three invariant subspaces of dimensions $$4$$, $$2$$ and $$2$$ respectively, each corresponding to an irreducible representation of $su(2)$. The subspace of dimension $$4$$ is uniquely determined and corresponds to states that are themselves invariant under the action of the symmetric group. This is the so called {\it symmetric sector.} The subspaces of dimension two are not uniquely determined and we parametrize them all. We provide an analysis of pure states that are in the subspaces invariant under $$U^{S_3}(8)$. This concerns their entanglement properties, separability criteria and dynamics under the Lie subgroup $$U^{S_3}(8)$$. As a physical motivation for the states and dynamics we study, we propose a physical set-up which consists of a symmetric network of three spin $$\frac{1}{2}$$ particles under a common driving electro-magnetic field. {For such system, we solve the control theoretic problem of driving a separable state to a state with maximal distributed entanglement. 
    more » « less
  5. For finitely generated groups G and H equipped with word metrics, a translation-like action of H on G is a free action where each element of H moves elements of G a bounded distance. Translation-like actions provide a geometric generalization of subgroup containment. Extending work of Cohen, we show that cocompact lattices in a general semisimple Lie group G that is not isogenous to SL(2,ℝ) admit translation-like actions by ℤ2. This result follows from a more general result. Namely, we prove that any cocompact lattice in the unipotent radical N of the Borel subgroup AN of G acts translation-like on any cocompact lattice in G. We also prove that for noncompact simple Lie groups G,H with H 
    more » « less