Let X =G/Γ, where G is a connected Lie group and Γ is a lattice in G. Let O be an open subset of X, and let F = {g_t : t ≥ 0} be a one-parameter subsemigroup of G. Consider the set of points in X whose F-orbit misses O; it has measure zero if the flow is ergodic. It has been conjectured that, assuming ergodicity, this set has Hausdorff dimension strictly smaller than the dimension of X. This conjecture has been proved when X is compact or when G is a simple Lie group of real rank 1, or, most recently, for certain flows on the space of lattices. In this paper we prove this conjecture for arbitrary Addiagonalizable flows on irreducible quotients of semisimple Lie groups. The proof uses exponential mixing of the flow together with the method of integral inequalities for height functions on G/Γ. We also derive an application to jointly Dirichlet-Improvable systems of linear forms.
more »
« less
Coarse models of homogeneous spaces and translations-like actions
For finitely generated groups G and H equipped with word metrics, a translation-like action of H on G is a free action where each element of H moves elements of G a bounded distance. Translation-like actions provide a geometric generalization of subgroup containment. Extending work of Cohen, we show that cocompact lattices in a general semisimple Lie group G that is not isogenous to SL(2,ℝ) admit translation-like actions by ℤ2. This result follows from a more general result. Namely, we prove that any cocompact lattice in the unipotent radical N of the Borel subgroup AN of G acts translation-like on any cocompact lattice in G. We also prove that for noncompact simple Lie groups G,H with H
more »
« less
- Award ID(s):
- 1812153
- PAR ID:
- 10188350
- Date Published:
- Journal Name:
- Preprint
- ISSN:
- 1864-7839
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper we study Zimmer's conjecture for $$C^{1}$$ actions of lattice subgroup of a higher-rank simple Lie group with finite center on compact manifolds. We show that when the rank of an uniform lattice is larger than the dimension of the manifold, then the action factors through a finite group. For lattices in $${\rm SL}(n, {{\mathbb {R}}})$$ , the dimensional bound is sharp.more » « less
-
An integer is called almost-prime if it has fewer than a fixed number of prime factors. In this paper, we study the asymptotic distribution of almost-prime entries in horospherical flows on Gamma\SL(n,R), where Gamma is either SL(n,Z) or a cocompact lattice. In the cocompact case, we obtain a result that implies density for almost-primes in horospherical flows where the number of prime factors is independent of basepoint, and in the space of lattices we show the density of almost-primes in abelian horospherical orbits of points satisfying a certain Diophantine condition. Along the way we give an effective equidistribution result for arbitrary horospherical flows on the space of lattices, as well as an effective rate for the equidistribution of arithmetic progressions in abelian horospherical flows.more » « less
-
We study the problem of approximating the value of the matching polynomial on graphs with edge parameter γ, where γ takes arbitrary values in the complex plane. When γ is a positive real, Jerrum and Sinclair showed that the problem admits an FPRAS on general graphs. For general complex values of γ, Patel and Regts, building on methods developed by Barvinok, showed that the problem admits an FPTAS on graphs of maximum degree Δ as long as γ is not a negative real number less than or equal to −1/(4(Δ −1)). Our first main result completes the picture for the approximability of the matching polynomial on bounded degree graphs. We show that for all Δ ≥ 3 and all real γ less than −1/(4(Δ −1)), the problem of approximating the value of the matching polynomial on graphs of maximum degree Δ with edge parameter γ is #P-hard. We then explore whether the maximum degree parameter can be replaced by the connective constant. Sinclair et al. showed that for positive real γ, it is possible to approximate the value of the matching polynomial using a correlation decay algorithm on graphs with bounded connective constant (and potentially unbounded maximum degree). We first show that this result does not extend in general in the complex plane; in particular, the problem is #P-hard on graphs with bounded connective constant for a dense set of γ values on the negative real axis. Nevertheless, we show that the result does extend for any complex value γ that does not lie on the negative real axis. Our analysis accounts for complex values of γ using geodesic distances in the complex plane in the metric defined by an appropriate density function.more » « less
An official website of the United States government

