skip to main content


Title: Comparative assessment of QM-based and MM-based models for prediction of protein–ligand binding affinity trends
Methods which accurately predict protein – ligand binding strengths are critical for drug discovery. In the last two decades, advances in chemical modelling have enabled steadily accelerating progress in the discovery and optimization of structure-based drug design. Most computational methods currently used in this context are based on molecular mechanics force fields that often have deficiencies in describing the quantum mechanical (QM) aspects of molecular binding. In this study, we show the competitiveness of our QM-based Molecules-in-Molecules (MIM) fragmentation method for characterizing binding energy trends for seven different datasets of protein – ligand complexes. By using molecular fragmentation, the MIM method allows for accelerated QM calculations. We demonstrate that for classes of structurally similar ligands bound to a common receptor, MIM provides excellent correlation to experiment, surpassing the more popular Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics Generalized Born Surface Area (MM/GBSA) methods. The MIM method offers a relatively simple, well-defined protocol by which binding trends can be ascertained at the QM level and is suggested as a promising option for lead optimization in structure-based drug design.  more » « less
Award ID(s):
2102583
NSF-PAR ID:
10341907
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
24
Issue:
23
ISSN:
1463-9076
Page Range / eLocation ID:
14525 to 14537
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metabotropic glutamate receptors (mGluRs) play an important role in regulating glutamate signal pathways, which are involved in neuropathy and periphery homeostasis. mGluR4, which belongs to Group III mGluRs, is most widely distributed in the periphery among all the mGluRs. It has been proved that the regulation of this receptor is involved in diabetes, colorectal carcinoma and many other diseases. However, the application of structure-based drug design to identify small molecules to regulate the mGluR4 receptor is limited due to the absence of a resolved mGluR4 protein structure. In this work, we first built a homology model of mGluR4 based on a crystal structure of mGluR8, and then conducted hierarchical virtual screening (HVS) to identify possible active ligands for mGluR4. The HVS protocol consists of three hierarchical filters including Glide docking, molecular dynamic (MD) simulation and binding free energy calculation. We successfully prioritized active ligands of mGluR4 from a set of screening compounds using HVS. The predicted active ligands based on binding affinities can almost cover all the experiment-determined active ligands, with only one ligand missed. The correlation between the measured and predicted binding affinities is significantly improved for the MM-PB/GBSA-WSAS methods compared to the Glide docking method. More importantly, we have identified hotspots for ligand binding, and we found that SER157 and GLY158 tend to contribute to the selectivity of mGluR4 ligands, while ALA154 and ALA155 could account for the ligand selectivity to mGluR8. We also recognized other 5 key residues that are critical for ligand potency. The difference of the binding profiles between mGluR4 and mGluR8 can guide us to develop more potent and selective modulators. Moreover, we evaluated the performance of IPSF, a novel type of scoring function trained by a machine learning algorithm on residue–ligand interaction profiles, in guiding drug lead optimization. The cross-validation root-mean-square errors (RMSEs) are much smaller than those by the endpoint methods, and the correlation coefficients are comparable to the best endpoint methods for both mGluRs. Thus, machine learning-based IPSF can be applied to guide lead optimization, albeit the total number of actives/inactives are not big, a typical scenario in drug discovery projects. 
    more » « less
  2. Abstract

    Gaussian accelerated molecular dynamics (GaMD) is a robust computational method for simultaneous unconstrained enhanced sampling and free energy calculations of biomolecules. It works by adding a harmonic boost potential to smooth biomolecular potential energy surface and reduce energy barriers. GaMD greatly accelerates biomolecular simulations by orders of magnitude. Without the need to set predefined reaction coordinates or collective variables, GaMD provides unconstrained enhanced sampling and is advantageous for simulating complex biological processes. The GaMD boost potential exhibits a Gaussian distribution, thereby allowing for energetic reweighting via cumulant expansion to the second order (i.e., “Gaussian approximation”). This leads to accurate reconstruction of free energy landscapes of biomolecules. Hybrid schemes with other enhanced sampling methods, such as the replica‐exchange GaMD (rex‐GaMD) and replica‐exchange umbrella sampling GaMD (GaREUS), have also been introduced, further improving sampling and free energy calculations. Recently, new “selective GaMD” algorithms including the Ligand GaMD (LiGaMD) and Peptide GaMD (Pep‐GaMD) enabled microsecond simulations to capture repetitive dissociation and binding of small‐molecule ligands and highly flexible peptides. The simulations then allowed highly efficient quantitative characterization of the ligand/peptide binding thermodynamics and kinetics. Taken together, GaMD and its innovative variants are applicable to simulate a wide variety of biomolecular dynamics, including protein folding, conformational changes and allostery, ligand binding, peptide binding, protein–protein/nucleic acid/carbohydrate interactions, and carbohydrate/nucleic acid interactions. In this review, we present principles of the GaMD algorithms and recent applications in biomolecular simulations and drug design.

    This article is categorized under:

    Structure and Mechanism > Computational Biochemistry and Biophysics

    Molecular and Statistical Mechanics > Molecular Dynamics and Monte‐Carlo Methods

    Molecular and Statistical Mechanics > Free Energy Methods

     
    more » « less
  3. Abstract

    The logarithm ofn‐octanol–water partition coefficient (logP) is frequently used as an indicator of lipophilicity in drug discovery, which has substantial impacts on the absorption, distribution, metabolism, excretion, and toxicity of a drug candidate. Considering that the experimental measurement of the property is costly and time‐consuming, it is of great importance to develop reliable prediction models for logP. In this study, we developed a transfer free energy‐based logP prediction model‐FElogP. FElogP is based on the simple principle that logP is determined by the free energy change of transferring a molecule from water ton‐octanol. The underlying physical method to calculate transfer free energy is the molecular mechanics‐Poisson Boltzmann surface area (MM‐PBSA), thus this method is named as free energy‐based logP (FElogP). The superiority of FElogP model was validated by a large set of 707 structurally diverse molecules in the ZINC database for which the measurement was of high quality. Encouragingly, FElogP outperformed several commonly‐used QSPR or machine learning‐based logP models, as well as some continuum solvation model‐based methods. The root‐mean‐square error (RMSE) and Pearson correlation coefficient (R) between the predicted and measured values are 0.91 log units and 0.71, respectively, while the runner‐up, the logP model implemented in OpenBabel had an RMSE of 1.13 log units and R of 0.67. Given the fact that FElogP was not parameterized against experimental logP directly, its excellent performance is likely to be expanded to arbitrary organic molecules covered by the general AMBER force fields.

     
    more » « less
  4. Abstract

    Virtual screening (VS) is a critical technique in understanding biomolecular interactions, particularly in drug design and discovery. However, the accuracy of current VS models heavily relies on three-dimensional (3D) structures obtained through molecular docking, which is often unreliable due to the low accuracy. To address this issue, we introduce a sequence-based virtual screening (SVS) as another generation of VS models that utilize advanced natural language processing (NLP) algorithms and optimized deepK-embedding strategies to encode biomolecular interactions without relying on 3D structure-based docking. We demonstrate that SVS outperforms state-of-the-art performance for four regression datasets involving protein-ligand binding, protein-protein, protein-nucleic acid binding, and ligand inhibition of protein-protein interactions and five classification datasets for protein-protein interactions in five biological species. SVS has the potential to transform current practices in drug discovery and protein engineering.

     
    more » « less
  5. Abstract

    Accurate estimation of solvation free energy (SFE) lays the foundation for accurate prediction of binding free energy. The Poisson‐Boltzmann (PB) or generalized Born (GB) combined with surface area (SA) continuum solvation method (PBSA and GBSA) have been widely used in SFE calculations because they can achieve good balance between accuracy and efficiency. However, the accuracy of these methods can be affected by several factors such as the charge models, polar and nonpolar SFE calculation methods and the atom radii used in the calculation. In this work, the performance of the ABCG2 (AM1‐BCC‐GAFF2) charge model as well as other two charge models, that is, RESP (Restrained Electrostatic Potential) and AM1‐BCC (Austin Model 1‐bond charge corrections), on the SFE prediction of 544 small molecules in water by PBSA/GBSA was evaluated. In order to improve the performance of the PBSA prediction based on the ABCG2 charge, we further explored the influence of atom radii on the prediction accuracy and yielded a set of atom radius parameters for more accurate SFE prediction using PBSA based on the ABCG2/GAFF2 by reproducing the thermodynamic integration (TI) calculation results. The PB radius parameters of carbon, oxygen, sulfur, phosphorus, chloride, bromide and iodine, were adjusted. New atom types,on,oi,hn1,hn2,hn3, were introduced to further improve the fitting performance. Then, we tuned the parameters in the nonpolar SFE model using the experimental SFE data and the PB calculation results. By adopting the new radius parameters and new nonpolar SFE model, the root mean square error (RMSE) of the SFE calculation for the 544 molecules decreased from 2.38 to 1.05 kcal/mol. Finally, the new radius parameters were applied in the prediction of protein‐ligand binding free energies using the MM‐PBSA method. For the eight systems tested, we could observe higher correlation between the experiment data and calculation results and smaller prediction errors for the absolute binding free energies, demonstrating that our new radius parameters can improve the free energy calculation using the MM‐PBSA method.

     
    more » « less