skip to main content


Title: Dipole Effects on Electron Transfer are Enormous
Abstract

Molecular dipoles present important, but underutilized, methods for guiding electron transfer (ET) processes. While dipoles generate fields of Gigavolts per meter in their vicinity, reported differences between rates of ET along versus against dipoles are often small or undetectable. Herein we show unprecedentedly large dipole effects on ET. Depending on their orientation, dipoles either ensure picosecond ET, or turn ET completely off. Furthermore, favorable dipole orientation makes ET possible even in lipophilic medium, which appears counterintuitive for non‐charged donor–acceptor systems. Our analysis reveals that dipoles can substantially alter the ET driving force for low solvent polarity, which accounts for these unique trends. This discovery opens doors for guiding forward ET processes while suppressing undesired backward electron transduction, which is one of the holy grails of photophysics and energy science.

 
more » « less
Award ID(s):
1665212
NSF-PAR ID:
10060414
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
57
Issue:
38
ISSN:
1433-7851
Page Range / eLocation ID:
p. 12365-12369
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Molecular dipoles present important, but underutilized, methods for guiding electron transfer (ET) processes. While dipoles generate fields of Gigavolts per meter in their vicinity, reported differences between rates of ET along versus against dipoles are often small or undetectable. Herein we show unprecedentedly large dipole effects on ET. Depending on their orientation, dipoles either ensure picosecond ET, or turn ET completely off. Furthermore, favorable dipole orientation makes ET possible even in lipophilic medium, which appears counterintuitive for non‐charged donor–acceptor systems. Our analysis reveals that dipoles can substantially alter the ET driving force for low solvent polarity, which accounts for these unique trends. This discovery opens doors for guiding forward ET processes while suppressing undesired backward electron transduction, which is one of the holy grails of photophysics and energy science.

     
    more » « less
  2. Abstract

    Dipolar interactions are ever‐present in supramolecular architectures, though their impact is typically revealed by making dipoles stronger. While it is also possible to assess the role of dipoles by altering their orientations by using synthetic design, doing so without altering the molecular shape is not straightforward. We have now done this by flipping one triazole unit in a rigid macrocycle, tricarb. The macrocycle is composed of three carbazoles (2 Debye) and three triazoles (5 Debye) defining an array of dipoles aligned radially but organized alternately in and out. These dipoles are believed to dictate edge‐to‐edge tiling and face‐to‐face stacking. We modified our synthesis to prepare isosteric macrocycles with the orientation of one triazole dipole rotated 40°. The new dipole orientation guides edge‐to‐edge contacts to reorder the stability of two surface‐bound 2D polymorphs. The impact on dipole‐enhanced π stacking, however, was unexpected. Our stacking model identified an unchanged set of short‐range (3.4 Å)anti‐parallel dipole contacts. Despite this situation, the reduction in self‐association was attributed to long‐range (~6.4 Å) dipolar repulsions between π‐stacked macrocycles. This work highlights our ability to control the build‐up and symmetry of macrocyclic skeletons by synthetic design, and the work needed to further our understanding of how dipoles control self‐assembly.

     
    more » « less
  3. Doped semiconductor nanowires are emerging as next-generation electronic colloidal materials, and the efficient manipulation of such nanostructures is crucial for technological applications. In fluid suspension, pn nanowires (pn NWs), unlike homogeneous nanowires, have a permanent dipole, and thus, experience a torque under an external DC field that orients the nanowire with its n-type end in the direction of the field. Here, we quantitatively measure the permanent dipoles of various Si nanowire pn diodes and investigate their origin. By comparing the dipoles of pn NWs of different lengths and radii, we show that the permanent dipole originates from non-uniform surface-charge distributions, rather than the internal charges at the p–n junction as was previously proposed. This understanding of the mechanism for pn NWs orientation has relevance to the manipulation, assembly, characterization, and separation of nanowire electronics by electric fields.

     
    more » « less
  4. Lipid bilayers are supramolecular structures responsible for a range of processes, such as transmembrane transport of ions and solutes, and sorting and replication of genetic materials, to name just a few. Some of these processes are transient and currently, cannot be visualized in real space and time. Here, we developed an approach using 1D, 2D, and 3D Van Hove correlation functions to image collective headgroup dipole motions in zwitterionic phospholipid bilayers. We show that both 2D and 3D spatiotemporal images of headgroup dipoles are consistent with commonly understood dynamic features of fluids. However, analysis of the 1D Van Hove function reveals lateral transient and re-emergent collective dynamics of the headgroup dipoles—occurring at picosecond time scales—that transmit and dissipate heat at longer times, due to relaxation processes. At the same time, the headgroup dipoles also generate membrane surface undulations due a collective tilting of the headgroup dipoles. A continuous intensity band of headgroup dipole spatiotemporal correlations—at nanometer length and nanosecond time scales—indicates that dipoles undergo stretching and squeezing elastic deformations. Importantly, the above mentioned intrinsic headgroup dipole motions can be externally stimulated at GHz-frequency scale, enhancing their flexoelectric and piezoelectric capabilities (i.e., increased conversion efficiency of mechanical energy into electric energy). In conclusion, we discuss how lipid membranes can provide molecular-level insights about biological learning and memory, and as platforms for the development of the next generation of neuromorphic computers. 
    more » « less
  5. Abstract

    Magneto‐elastic materials facilitate features such as shape programmability, adaptive stiffness, and tunable strength, which are critical for advances in structural and robotic materials. Magneto‐elastic networks are commonly fabricated by employing hard magnets embedded in soft matrices to constitute a monolithic body. These architected network materials have excellent mechanical properties but damage incurred in extreme loading scenarios are permanent. To overcome this limitation, we present a novel design for elastic bars with permanent fixed dipole magnets at their ends and demonstrate their ability to self‐assemble into magneto‐elastic networks under random vibrations. The magneto‐elastic unit configuration, most notably the orientation of end dipoles, is shown to dictate the self‐assembled network topology, which can range from quasi‐ordered triangular lattices to stacks or strings of particles. Network mechanics are probed with uniaxial tensile tests and design criteria for forming stable lightweight 2D networks are established. It is shown that these magneto‐elastic networks rearrange and break gracefully at their magnetic nodes under large excitations and yet recover their original structure at moderate random excitations. This work paves the way for structural materials that can be self‐assembled and repaired on‐the‐fly with random vibrations, and broadens the applications of magneto‐elastic soft materials.

     
    more » « less