skip to main content


Title: A compressive channel estimation technique robust to synchronization impairments
Initial access at millimeter wave frequencies is a challenging problem due to hardware non-idealities and low SNR measurements prior to beamforming. Prior work has exploited the observation that mmWave MIMO channels are sparse in the spatial angle domain and has used compressed sensing based algorithms for channel estimation. Most of them, however, ignore hardware impairments like carrier frequency offset and phase noise, and fail to perform well when such impairments are considered. In this paper, we develop a compressive channel estimation algorithm for narrowband mmWave systems, which is robust to such non idealities. We address this problem by constructing a tensor that models both the mmWave channel and CFO, and estimate the tensor while still exploiting the sparsity of the mmWave channel. Simulation results show that under the same settings, our method performs better than comparable algorithms that are robust to phase errors.  more » « less
Award ID(s):
1702800
NSF-PAR ID:
10060677
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Low overhead channel estimation based on compressive sensing (CS) has been widely investigated for hybrid wideband millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems. The channel sparsifying dictionaries used in prior work are built from ideal array response vectors evaluated on discrete angles of arrival/departure. In addition, these dictionaries are assumed to be the same for all subcarriers, without considering the impacts of hardware impairments and beam squint. In this manuscript, we derive a general channel and signal model that explicitly incorporates the impacts of hardware impairments, practical pulse shaping functions, and beam squint, overcoming the limitations of mmWave MIMO channel and signal models commonly used in previous work. Then, we propose a dictionary learning (DL) algorithm to obtain the sparsifying dictionaries embedding hardware impairments, by considering the effect of beam squint without introducing it into the learning process. We also design a novel CS channel estimation algorithm under beam squint and hardware impairments, where the channel structures at different subcarriers are exploited to enable channel parameter estimation with low complexity and high accuracy. Numerical results demonstrate the effectiveness of the proposed DL and channel estimation strategy when applied to realistic mmWave channels. 
    more » « less
  2. Abstract: Impairments such as time varying phase noise (PHN) and carrier frequency offset (CFO) result in loss of synchronization and poor performance of multi-relay communication systems. Joint estimation of these impairments is necessary in order to correctly decode the received signal at the destination. In this paper, we address spectrally efficient multi-relay transmission scenarios where all the relays simultaneously communicate with the destination. We propose an iterative pilot-aided algorithm based on the expectation conditional maximization for joint estimation of multipath channels, Wiener PHNs, and CFOs in decode-and-forward-based multi-relay orthogonal frequency division multiplexing systems. Next, a new expression of the hybrid Cramér-Rao lower bound (HCRB) for the multi-parameter estimation problem is derived. Finally, an iterative receiver based on an extended Kalman filter for joint data detection and PHN tracking is employed. Numerical results show that the proposed estimator outperforms existing algorithms and its mean square error performance is close to the derived HCRB at different signal-to-noise ratios for different PHN variances. In addition, the combined estimation algorithm and the iterative receiver can significantly improve average bit-error rate (BER) performance compared with existing algorithms. In addition, the BER performance of the proposed system is close to the ideal case of perfect channel impulse responses, PHNs, and CFOs estimation. 
    more » « less
  3. Physical unclonable functions (PUF) in silicon exploit die-to-die manufacturing variations during fabrication for uniquely identifying each die. Since it is practically a hard problem to recreate exact silicon features across dies, a PUF-based authentication system is robust, secure and cost-effective, as long as bias removal and error correction are taken into account. In this work, we utilize the effects of inherent process variation on analog and radio-frequency (RF) properties of multiple wireless transmitters (Tx) in a sensor network, and detect the features at the receiver (Rx) using a deep neural network based framework. The proposed mechanism/ framework, called RF-PUF, harnesses already-existing RF communication hardware and does not require any additional PUF-generation circuitry in the Tx for practical implementation. Simulation results indicate that the RF-PUF framework can distinguish up to 10000 transmitters (with standard foundry defined variations for a 65 nm process, leading to non-idealities such as LO offset and I-Q imbalance) under varying channel conditions, with a probability of false detection <10^-3 
    more » « less
  4. For 5G it will be important to leverage the available millimeter wave spectrum. To achieve an approximately omni- directional coverage with a similar effective antenna aperture compared to state-of-the-art cellular systems, an antenna array is required at both the mobile and basestation. Due to the large bandwidth and inefficient amplifiers available in CMOS for mmWave, the analog front-end of the receiver with a large number of antennas becomes especially power hungry. Two main solutions exist to reduce the power consumption: hybrid beam forming and digital beam forming with low resolution Analog to Digital Converters (ADCs). In this work we compare the spectral and energy efficiency of both systems under practical system constraints. We consider the effects of channel estimation, transmitter impairments and multiple simultaneous users for a wideband multipath model. Our power consumption model considers components reported in literature at 60 GHz. In contrast to many other works we also consider the correlation of the quantization error, and generalize the modeling of it to non- uniform quantizers and different quantizers at each antenna. The result shows that as the Signal to Noise Ratio (SNR) gets larger the ADC resolution achieving the optimal energy efficiency gets also larger. The energy efficiency peaks for 5 bit resolution at high SNR, since due to other limiting factors the achievable rate almost saturates at this resolution. We also show that in the multi- user scenario digital beamforming is in any case more energy efficient than hybrid beamforming. In addition we show that if mixed ADC resolutions are used we can achieve any desired trade-off between power consumption and rate close to those achieved with only one ADC resolution. 
    more » « less
  5. In this work, we propose a novel approach for high accuracy user localization by merging tools from both millimeter wave (mmWave) imaging and communications. The key idea of the proposed solution is to leverage mmWave imaging to construct a high-resolution 3D image of the line-of-sight (LOS) and non-line-of-sight (NLOS) objects in the environment at one antenna array. Then, uplink pilot signaling with the user is used to estimate the angle-of-arrival and time-of- arrival of the dominant channel paths. By projecting the AoA and ToA information on the 3D mmWave images of the environment, the proposed solution can locate the user with a sub-centimeter accuracy. This approach has several gains. First, it allows accurate simultaneous localization and mapping (SLAM) from a single standpoint, i.e., using only one antenna array. Second, it does not require any prior knowledge of the surrounding environment. Third, it can locate NLOS users, even if their signals experience more than one reflection and without requiring an antenna array at the user. The approach is evaluated using a hardware setup and its ability to provide sub-centimeter localization accuracy is shown 
    more » « less