skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A compressive channel estimation technique robust to synchronization impairments
Initial access at millimeter wave frequencies is a challenging problem due to hardware non-idealities and low SNR measurements prior to beamforming. Prior work has exploited the observation that mmWave MIMO channels are sparse in the spatial angle domain and has used compressed sensing based algorithms for channel estimation. Most of them, however, ignore hardware impairments like carrier frequency offset and phase noise, and fail to perform well when such impairments are considered. In this paper, we develop a compressive channel estimation algorithm for narrowband mmWave systems, which is robust to such non idealities. We address this problem by constructing a tensor that models both the mmWave channel and CFO, and estimate the tensor while still exploiting the sparsity of the mmWave channel. Simulation results show that under the same settings, our method performs better than comparable algorithms that are robust to phase errors.  more » « less
Award ID(s):
1702800
PAR ID:
10060677
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Low overhead channel estimation based on compressive sensing (CS) has been widely investigated for hybrid wideband millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems. The channel sparsifying dictionaries used in prior work are built from ideal array response vectors evaluated on discrete angles of arrival/departure. In addition, these dictionaries are assumed to be the same for all subcarriers, without considering the impacts of hardware impairments and beam squint. In this manuscript, we derive a general channel and signal model that explicitly incorporates the impacts of hardware impairments, practical pulse shaping functions, and beam squint, overcoming the limitations of mmWave MIMO channel and signal models commonly used in previous work. Then, we propose a dictionary learning (DL) algorithm to obtain the sparsifying dictionaries embedding hardware impairments, by considering the effect of beam squint without introducing it into the learning process. We also design a novel CS channel estimation algorithm under beam squint and hardware impairments, where the channel structures at different subcarriers are exploited to enable channel parameter estimation with low complexity and high accuracy. Numerical results demonstrate the effectiveness of the proposed DL and channel estimation strategy when applied to realistic mmWave channels. 
    more » « less
  2. null (Ed.)
    We propose sparsity-adaptive beamspace channel estimation algorithms that improve accuracy for 1-bit data converters in all-digital millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) basestations. Our algorithms include a tuning stage based on Stein's unbiased risk estimate (SURE) that automatically selects optimal denoising parameters depending on the instantaneous channel conditions. Simulation results with line-of-sight (LoS) and non-LoS mmWave massive MIMO channel models show that our algorithms improve channel estimation accuracy with 1-bit measurements in a computationally-efficient manner. 
    more » « less
  3. Millimeter-wave (mmWave) systems require a large number of antennas, which makes the beam training challenging and time-consuming for conventional phased arrays. Recently, a true-time-delay (TTD) array-based beam training algorithm has been shown as an effective solution to overcome the training overhead in large arrays. In this paper, we present a custombuilt over-the-air (OTA) testbed to study the effects of hardware impairments on the TTD-based beam training and verify its feasibility in a real system. We proposed an orthogonal matching pursuit (OMP) based reconstruction algorithm along with a phase calibration dictionary to combat nonidealities such as strong frequency selectivity and phase misalignment in the received raw IQ signal. Post-processing results showed that with the nonideality effects properly handled, the 3D TTD beam training algorithm can achieve high AOA estimation accuracy. 
    more » « less
  4. Abstract: Impairments such as time varying phase noise (PHN) and carrier frequency offset (CFO) result in loss of synchronization and poor performance of multi-relay communication systems. Joint estimation of these impairments is necessary in order to correctly decode the received signal at the destination. In this paper, we address spectrally efficient multi-relay transmission scenarios where all the relays simultaneously communicate with the destination. We propose an iterative pilot-aided algorithm based on the expectation conditional maximization for joint estimation of multipath channels, Wiener PHNs, and CFOs in decode-and-forward-based multi-relay orthogonal frequency division multiplexing systems. Next, a new expression of the hybrid Cramér-Rao lower bound (HCRB) for the multi-parameter estimation problem is derived. Finally, an iterative receiver based on an extended Kalman filter for joint data detection and PHN tracking is employed. Numerical results show that the proposed estimator outperforms existing algorithms and its mean square error performance is close to the derived HCRB at different signal-to-noise ratios for different PHN variances. In addition, the combined estimation algorithm and the iterative receiver can significantly improve average bit-error rate (BER) performance compared with existing algorithms. In addition, the BER performance of the proposed system is close to the ideal case of perfect channel impulse responses, PHNs, and CFOs estimation. 
    more » « less
  5. Massive multi-antenna millimeter wave (mmWave) and terahertz wireless systems promise high-bandwidth communication to multiple user equipments in the same time-frequency resource. The high path loss of wave propagation at such frequencies and the fine-grained nature of beamforming with massive antenna arrays necessitates accurate channel estimation to fully exploit the advantages of such systems. In this paper, we propose BEAmspace CHannel EStimation (BEACHES), a low-complexity channel estimation algorithm for multi-antenna mmWave systems and beyond. BEACHES leverages the fact that wave propagation at high frequencies is directional, which enables us to denoise the (approximately) sparse channel state information in the beamspace domain. To avoid tedious parameter selection, BEACHES includes a computationally-efficient tuning stage that provably minimizes the mean-square error of the channel estimate in the large-antenna limit. To demonstrate the efficacy of BEACHES, we provide simulation results for line-of-sight (LoS) and non-LoS mmWave channel models. 
    more » « less