Title: Then and Now: Women Engineers' Perspectives on Changes and Challenges in the Field Since the 1970s
Our research assesses a pivotal generation of pioneering American women engineers who graduated from college in the 1970s. In that decade, young women, encouraged in part by the women’s movement and changing social expectations, flocked into higher education and, to a much lesser extent, engineering. These female students, although not the very first women to enter engineering, were the beneficiaries of new affirmative action laws, and unlike their predecessors, they were part of a small but growing cohort of women engineers. The percentage of women earning undergraduate degrees in engineering grew at a rapid rate from less than 1 percent in 1970 to 9 percent in 1979. Understanding the career trajectories of these women may help institutions to develop better means of supporting female engineers. (Article published In the annual research issue on the state of women in engineering.) more »« less
McKoy, T.L.; Beane, C.D.; Oyeteju, M.O.; Hammond, M.S.; Hargrove, S.K
(, Urban education research and policy annuals)
null
(Ed.)
To continue as global science and technological leaders, the United States is motivated to create a diverse, engineering workforce. One way of diversifying the engineering workforce is to address the disparity of women engineers. Although concerted efforts to improve retention rates of women in engineering are ongoing, women have earned only 5.6% of all undergraduate engineering degrees, with only 1% attributed to African American women (NSF, 2015b). African American women are commonly included in racial or gender-focused studies on persistence; however, few studies assess the effect of multiple identities to persistence. This exploratory study examined the relationship of persistence, measured by intent to persist, to multiple identities (social, professional, and racial) of African American female engineering students. Forward regression analyses were conducted and results indicated that the participant’s mathematical identities were more salient to them than their racial or gender identities. Also, the values these women placed on being an engineer and belonging to the group were principal aspects of their professional identity. Additionally, negative affect and stereotype threat were found significant predictors of intent to persist.
The purpose of the current study is to examine the engineering interests held by a diverse sample of high school students, along with a battery of social cognitive factors related to interest – including experience with engineering, knowledge and understanding of engineering as a career field, and identity as an engineer. The study is part of an overarching program of research at Arizona State University’s Ira A. Fulton Schools of Engineering, aimed at testing the efficacy of an out-of-school engineering program, Young Engineers Shape the World embedded in an NSF INCLUDES project. This NSF project, Engineers from Day One, aims to facilitate the engineering identities of female, first-generation, and underrepresented minority students, with the goal of increasing these students’ entry and retention in engineering majors. This paper presents findings from efforts to study the awareness, enjoyment, interest, opinion formation, and understanding that high school students have towards engineering. These high school students were enrolled in a year-round program, Young Engineers Shape the World. A questionnaire was administered to a sample of high school students (N = 334, 53.3% female, 60.6% non-white, 77.1% first-generation) via the online survey platform Qualtrics. In addition to collecting demographic information, the questionnaire collected data on students’ experience with engineering, their understanding of who engineers are and what they do, and their identities as future engineers.
Ali, S.
(, 2021 ASEE Virtual Annual Conference Content Access)
More women than men in the US graduate college, but women constitute only 16% of the engineering workforce [1]. Women frequently attribute their lack of persistence in engineering to a chilly academic climate [2]. Researchers have suggested that developing a robust engineering identity could moderate a climate effect and support improved retention and graduation of female engineers [2]. However, there is little empirical data on interrelationships among gender, perceived academic climate in engineering programs, engineering identity, and belonging to an engineering community. We drew on social identity theory and extant literature to develop four research questions: 1) Are there any differences between men and women regarding perceived academic climate, sense of belonging, and engineering identity? 2) Does academic climate predict engineering identity in the same way for women and men? 3)Does sense of belonging mediate the relationship between perceived academic climate and engineering identity? 4) Do engineering students who are women demonstrate different relationships among perceived climate, engineering identity, and belongingness from men? We used survey data from a multi-year NSF-funded project (Award # 1726268, #1726088, and #1725880/2033129) that incorporated experimental course-based interventions to build an inclusive curriculum. Surveys were administered at the beginning and end of the semester. We found that at the end of the semester women engineering undergraduates reported lower engineering identity though the initial engineering identity, perceived academic climate, and sense of belonging were the same for both men and women engineering undergraduates. Multiple regression analyses with 601 first-year engineer majors (21% female) indicated perceived climate and gender accounted for 48% of engineering identity variability. The interaction between perceived climate and gender on engineering identity was not statistically significant. Mediation analysis revealed that sense of belonging (b=0.42, 95% CI [0.30, 0.53]) mediated the relationship between perceived climate and engineering identity for both males and females. Sense of belonging was critical in engineering identity. Moderated mediation analysis indicated gender did not moderate the indirect effect of perceived climate on engineering identity through a sense of belonging.
Engineering Projects in Community Service (EPICS) is a middle and high school program, with a focus on the engineering design process and delivering real solutions to community partners. In order to evaluate the efficacy of the program, a pre-post test design was implemented to examine changes in attitudinal and behavioral measures. Pre-data were collected at the beginning of the school year, and paralleled the program’s registration process to ensure high response rates; post- data were then collected at the end of the school year. Demographic data demonstrate that of all 2018 - 2019 registered EPICS participants (N = 414), 41 percent were female; 66.6 percent were non-white; and 30 percent held first generation student status. Importantly, 68.5 percent of participants reported that neither parent or guardian is an engineer, and 65.7 percent of participants reported that they “definitely will attend” a four-year university. These data suggest that the current sample is ideal for evaluating EPICS as a pre-college engineering education program, because most participants are not experiencing engineering in the home and may be less susceptible to parental pressures for choosing engineering as a college major and potential career, but have salient intentions to attend college. In addition to collecting demographic information, participants completed a series of measures designed to capture attitudes and behaviors toward engineering as a potential career field. The main measures of interest include Engineering Identity and Doing Engineering. Engineering Identity scores reflect participants’ personal and professional identities as engineers; Doing Engineering scores indicate participants’ prior experience with engineering and its related technical skills. Baseline data on the sample reveal average engineering identities (M = 38.41, SD = 6.44, 95% CI [37.77, 39.05]). A series of t-tests was conducted to examine gender differences in these measures. Men reported significantly higher engineering identities (M = 37.65, SD = 6.58) compared to women (M = 39.54, SD = 6.09), t(360) = 2.95, p = .003, F = .037. Men reported stronger and more frequent experiences with engineering, indicated by their higher Doing Engineering scores (M = 13.75, SD = 5.16), compared to women (M = 15.31, SD = 4.69), t(368) = 3.13, p = .002, F = .003. Interestingly, first generation students reported higher engineering identities (M = 37.45, SD = 6.53) compared to non-first generation students (M = 39.66, SD = 5.99), t(375) = 3.46, p = .001, F = 1.39. To examine the relationship between Engineering Identity and Doing Engineering, a correlation analysis was conducted and a moderate, positive relationship emerged, such that as students’ experience with engineering increased, their engineering identities also increased (R = .463, p > .000).
Engineering is a creative profession where diverse perspectives of both men and women are crucial to the field. The importance of better understanding the pipeline of female students into engineering, and the path to their success in the major is evident. In 2017, women comprised approximately 20% of engineering graduates, up from 18% in 1997, and 15% never entered the engineering workforce. In 2019, women comprised 48% of the workforce, 34% of the STEM workforce, and only 16% of practicing engineers, a 3% increase from 2009. In an effort to better understand these disparities, this mixed methods research investigated the creative self-efficacy (CSE) of women engineering majors and their beliefs about creativity in relation to lived experiences and explores the research question: In what ways do undergraduate women engineering students describe their creativity and how their lived experiences influenced their decision to major in engineering? The researchers investigated the lived experiences of women engineering students before they entered the engineering major in relation to the way they described themselves as creative. A survey of CSE and beliefs about creativity was administered to 121 undergraduate women engineering students who volunteered for this study. Interviews were conducted of 15 participants selected from survey results with different levels of CSE who met the researcher’s criteria for success in the engineering major. The findings of this study lead to several conclusions: (1) students’ descriptions of themselves as creative corresponded more with the arts than to innovation in engineering; (2) students who described themselves as less creative: (a) had a lower level of CSE; (b) had a greater exposure to engineering in high school through engineering-centered courses and clubs; (c) had a family member who worked in the profession; (d) described more negative classroom experiences at all educational levels that involved intimidation, isolation, and gender-bias.
Ettinger, Laura, Conroy, Nicole, and Barr, William II. Then and Now: Women Engineers' Perspectives on Changes and Challenges in the Field Since the 1970s. Retrieved from https://par.nsf.gov/biblio/10060850. SWE 64.2
Ettinger, Laura, Conroy, Nicole, & Barr, William II. Then and Now: Women Engineers' Perspectives on Changes and Challenges in the Field Since the 1970s. SWE, 64 (2). Retrieved from https://par.nsf.gov/biblio/10060850.
Ettinger, Laura, Conroy, Nicole, and Barr, William II.
"Then and Now: Women Engineers' Perspectives on Changes and Challenges in the Field Since the 1970s". SWE 64 (2). Country unknown/Code not available. https://par.nsf.gov/biblio/10060850.
@article{osti_10060850,
place = {Country unknown/Code not available},
title = {Then and Now: Women Engineers' Perspectives on Changes and Challenges in the Field Since the 1970s},
url = {https://par.nsf.gov/biblio/10060850},
abstractNote = {Our research assesses a pivotal generation of pioneering American women engineers who graduated from college in the 1970s. In that decade, young women, encouraged in part by the women’s movement and changing social expectations, flocked into higher education and, to a much lesser extent, engineering. These female students, although not the very first women to enter engineering, were the beneficiaries of new affirmative action laws, and unlike their predecessors, they were part of a small but growing cohort of women engineers. The percentage of women earning undergraduate degrees in engineering grew at a rapid rate from less than 1 percent in 1970 to 9 percent in 1979. Understanding the career trajectories of these women may help institutions to develop better means of supporting female engineers. (Article published In the annual research issue on the state of women in engineering.)},
journal = {SWE},
volume = {64},
number = {2},
author = {Ettinger, Laura and Conroy, Nicole and Barr, William II.},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.